Lecture 4
Scribe?

Last time

- 2nd-order optimality cond.
- Basic convexity

More on convexity

Agenda
- More on convexity
- Characterization smooth convex.
- Subgradients.

More on convexity

Lemma: Assume that $C_1, C_2 \subseteq \mathbb{R}^n$ convex sets.

Then, the following are convex

1. (Scaling) $\lambda C_1 = \{ \lambda x \mid \lambda \geq 0 \text{ and } x \in C_1 \}$
2. (Sums) $C_1 + C_2 = \{ x_1 + x_2 \mid x_1 \in C_1, x_2 \in C_2 \}$
3. (Intersections) $C_1 \cap C_2$
4. (Linear images and preimages)

Let $A : \mathbb{R}^d \to \mathbb{R}^n$ is linear,

$A C_1$ and $A^{-1} C_3$ are convex.

Intuition
Proof: Exercise

Equivalence of operations

<table>
<thead>
<tr>
<th>Function</th>
<th>Epigraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda f(x/a))</td>
<td>(\lambda \text{epi } f)</td>
</tr>
<tr>
<td>(\max_i f_i)</td>
<td>(\cap \text{epi } f)</td>
</tr>
<tr>
<td>(f(AX))</td>
<td>([AXI]^{-1} \text{epi } f)</td>
</tr>
</tbody>
</table>

Lemma (First-order characterization of convexity)

Suppose that \(f : \mathbb{R}^d \to \mathbb{R} \) is differentiable. Then, the following are equivalent:

1. \(f \) is convex.
2. \(\forall x,y \in \mathbb{R}^d \) \(f(y) \geq f(x) + \langle \nabla f(x), y-x \rangle \)
3. \(\forall x, y \) \(\langle \nabla f(x) - \nabla f(y), x - y \rangle \geq 0 \)

Intuition for (2): \(f(x) + \langle \nabla f(x), y-x \rangle \) supports the epigraph.
Intuition for (3): In 1D the function is monotone.

Proof: (1) \Rightarrow (2) Let $x, y \in \mathbb{R}^d$ and $t \in (0, 1)$. Convexity ensures that

$$f(t \cdot x + \lambda(y - x)) \leq (1-t)f(x) + \lambda f(y)$$

$$\Rightarrow$$

$$f(x + \lambda(y - x)) - f(x) \leq f(y) - f(x)$$

Taking $\lambda \to 0 \Rightarrow \langle f(x), x-y \rangle + f(x) \leq f(y)$.

(2) \Leftarrow (1) Let $x, y \in \mathbb{R}, \lambda \in [0,1]$ and $t \in (0,1)$.

$$z_t = (1-t)x + ty$$

$$\Rightarrow$$

$$f(x) \geq f(z_t) + \langle \nabla f(z_t), x - z_t \rangle \quad (\text{1})$$

$$f(y) \geq f(z_t) + \langle \nabla f(z_t), y - z_t \rangle \quad (\text{2})$$

$$\Rightarrow$$

$$(1-t) \cdot (\text{1}) + t \cdot (\text{2}) \text{ gives}$$

$$(1-t)f(x) + tf(y) \geq f(z_t) + \langle \nabla f(z_t), (1-t)x + ty - z_t \rangle$$

$$= f(z_t).$$
(2) ⇒ (3) \[f(x) = f(y) + \nabla f(y)^T (x - y) \]
\[+ f(y) = f(x) + \nabla f(x)^T (y - x) \]
\[0 \geq (\nabla f(x) - \nabla f(y))^T (y - x) \]

(3) ⇒ (2) Define \(\Psi(t) = f(x + t(y - x)) \)

Then \(f(y) = \Psi(1) = \Psi(0) + \int_0^1 \Psi'(t) \, dt \)
\[= \Psi(0) + \Psi'(0) + \int_0^1 \left[\Psi'(t) - \Psi'(0) \right] \, dt \]
\[= f(x) + \nabla f(x)(y - x) \]
\[= f(x) + \nabla f(x)(y - x) + \int_0^1 \nabla f(x + t(y - x))^T (y - x) \, dt \]
\[\geq f(x) + \nabla f(x)(y - x) \]

\[\square \]

Lemma 2nd-order characterization
Assume \(f \) twice differentiable. Then,
\(f \) is convex \(\iff \) \(\nabla^2 f(x) \geq 0 \ \forall x. \)
Intuition

Second order model never curves down!

\[y = f(x) + \langle v; y-x \rangle \]

Proof \hspace{1cm} \Box

Question: How can we assess optimality for general convex functions?

Idea: Consider a convex function \(f: \mathbb{R}^d \rightarrow \mathbb{R} \). The subdifferential of \(f \) at \(x \) is

\[\partial f(x) = \{ v \mid \forall y \in \mathbb{R}^d \quad f(y) \geq f(x) + \langle v; y-x \rangle \} \]
Examples

1. \(f(x) = |x| \)

2. \(f(x) = \|x\| \)

3. \(f(x) = \max \{0, x\} \)
 \[\Theta f(x) = \begin{cases} x & x \geq 0 \\ 0 & -1 \leq x < 0 \end{cases} \]
What do we just gained? general

Theorem: Optimality cond for convex func.
Suppose \(f: \mathbb{R}^d \to \mathbb{R} \) is convex. Then \(x^* \) is a minimizer iff \(0 \in \partial f(x^*). \)

Intuition

\[\text{Nothing goes under.} \]

Proof: Assume \(x^* \) is a minimizer.
\[
f(x^*) + \langle 0, y - x \rangle \leq f(y) \quad \forall y.
\]
Assume that \(0 \in \partial f(x^*). \)

Proposition: Subdifferential calculus
Suppose that \(f, h: \mathbb{R}^d \to \mathbb{R} \) are convex functions. Then the following holds

\[
\left(\sum_{\varepsilon} \partial (f + h)(x) = \partial f(x) + \partial h(x). \right)
\]