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3.1 Optimality conditions (Continued)

Theorem 3.1 (1st order sufficient condition) Assume f : Rd → R is convex and differentiable. Then
x∗ is a global minimizer ⇐⇒ ∇f(x̄∗) = 0.

Proof:“ =⇒ ”: Follows from the 1st order necessary condition.

“ ⇐= ”: Let ȳ ∈ Rd \ {x∗}. Define ψ(t) = f(x̄∗ + t(ȳ − x̄∗)). By the chain rule ψ′(0) = ∇f(x̄∗)(ȳ − x̄∗) = 0.

For any t ∈ (0, 1]:

f(x̄∗ + t(ȳ − x̄∗))− f(x̄∗)

t
≤ (1− t)f(x̄∗) + tf(ȳ)− f(x̄∗)

t
= f(ȳ)− f(x̄∗).

Thus, by taking the limit as t goes to zero, we get 0 = ψ′(0) ≤ f(ȳ)− f(x̄∗), and we have that f(x̄∗) ≤ f(ȳ).

Theorem 3.2 (2nd order necessary condition) Suppose that f : Rd → R is twice differentiable. If x̄∗

is a local minimizer, then ∇f(x̄∗) = 0 and ∇2f(x̄∗) ⪰ 0.

Note that ∇2f(x̄∗) ⪰ 0, means for all s̄ ∈ Rd \ {0} we have that s̄⊤∇2f(x̄∗)s̄ ≥ 0.

Proof: Seeking contradiction, assume ∇f(x̄∗) = 0 and there exists a bars ∈ Rd \ {0} s.t. s̄⊤∇2f(x̄∗)s̄ < 0
and ||s̄|| = 1.

Define ψ(t) = f(x̄∗ + ts̄). Then

0 >
1

2
ψ′′(0) = lim

t→0

ψ(t)− ψ(0)

t2
.

For small enough t > 0, we have that ψ(t)−ψ(0)
t2 ≤ 1

4ψ
′′(0) < 0. But this means that

ϕ(t)︷ ︸︸ ︷
f(x̄∗ + ts̄) <

ϕ(0)︷ ︸︸ ︷
f(x̄∗),

which is a contradiction.

Theorem 3.3 (2nd order sufficient condition) Suppose that f : Rd → R is twice differentiable. We
have that x̄∗ is a strict local minimizer if ∇f(x̄∗) = 0 and ∇2f(x̄∗) ≻ 0.

Proof:

Suppose x̄∗ satisfies the assumptions (∇f(x̄∗) = 0 and ∇2f(x̄∗) ≻ 0). Take Ū ∈ Rd s.t. ||Ū || = 1. Let
ψ(t) = f(x̄∗ + tŪ).

By the Fundamental Theorem of Calculus (FTC), we have that:

ϕ(s) = ϕ(0) +

∫ s

0

ϕ′(α)dα.
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Applying FTC again to ϕ′(α):

ϕ(s) = ϕ(0) +

∫ s

0

ϕ′(α) +

∫ α

0

ϕ′′(β) dβdα. (3.1)

Since ∇2f(x̄) is continuous and λmin(∇2f(x̄∗)) > 0. For all ȳ close to x̄∗, we have that λmin(∇2f(ȳ)) ≥ λ > 0
where λ is some positive constant.

From (3.1) we have that

ϕ(s) = ϕ(0) + ϕ′(0)s+

∫ s

0

∫ α

0

Ū⊤∇2f(x̄∗ + βŪ)Ūdβ dα ≥ ϕ(0) + λ

∫ s

0

∫ α

0

1dβ dα = f(x̄∗) +
λ

2
s2.

Note that the above theorem is not an if and only if, as can be seen with the following counter example.

Example 3.4 Let f(x) = x4. Then x = 0 is clearly a global minimizer, but f ′′(0) = ∇2f(0) = 0.

Figure 3.1: Plot of f(x) = x4.

3.2 Basic Convexity

Definition 3.5 A set C ⊆ Rd is convex if for all x̄, ȳ ∈ C and t ∈ [0, 1]:

tx̄+ (1− t)ȳ ∈ C.

I.e. the straight line between any two points in C must be entirely within C.
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Figure 3.2: An example of a non-convex set in R2.

Definition 3.6 Given any function f : Rd → R its epigraph is given by:

epif = {(x̄, t) | f(x̄) ≤ t}.
I.e. all points that are on or above the graph of f(x).

Figure 3.3: The epigraph of f(x) = x sin(x) + 1.

Theorem 3.7 A function f is convex iff the epigraph epif is convex.

Proof: Homework exercise. Follows easily from the definitions.

Lemma 3.8 Let C1, C2 ⊆ Rd be convex sets. Then C1 ∩ C2 is also convex.

Proof: Let x, y ∈ C1 ∩ C2, let t ∈ [0, 1]. Since C1 is convex tx̄ + (1 − t)ȳ ∈ C1, and since C2 is convex
tx̄+ (1− t)ȳ ∈ C2. Thus tx̄+ (1− t)ȳ ∈ C1 ∩ C2.


