Lecture 26 Last class (Borus class !) Last time Today & Heuristics to solve Weakly convex functions the subproblem. Composite optimization D Descent ^D Full method I ^D ^A guarantee >Guarantees . >Closing remarks

Why is this an interesting class?
It gives a natural way to measure stationarity. Star lurium ig.
Def: A vector $g \in \mathbb{R}^d$ is a subgradient
of a ρ -weakly convex function ρ at x C_{5} \in $\partial f(x)$, if $\forall y \quad f(y) = f(x) + \langle 5, y-x \rangle - \frac{p}{2} \|x-y\|^2.$ A point x is critical if $0 \in \partial f(x)$. Proposition : Let $f: \mathbb{R}^d \to \mathbb{R}$ p-neakly
convex, then for any $\lambda > 0$ with $\rho < \frac{1}{\lambda}$
the following are well-defined: prox $(x) = argmin \frac{f(y) + \frac{1}{2\lambda} ||y - x||^2}{2}$ $f_{\lambda}(x) = m_1 \eta$ $f(y) + \frac{1}{2\lambda} \|y - x\|^2$ Moreover, f_{λ} is continuosly diff and
if $\Pi \nabla f_{\lambda}(x) \parallel \leq \varepsilon$, then $x^* = \text{prox}_{\lambda} f(x)$ sat isfies:

$$
\begin{array}{l}\n\int_{\mathcal{L}} (x^+) & \leq \int_{\mathcal{L}} (x^+) + \frac{1}{2\lambda} \left\| x - x^+ \right\|^2 \leq \int_{\mathcal{L}} (x) \\
\text{so (ii)} \quad \int_{\mathcal{L}} \left\| \int_{\mathcal{L}} \left(\int_{\mathcal{L}} \right) \right\|_{\mathcal{L}} \leq \int_{\mathcal{L}} \left(\int_{\mathcal{L}} \left(\int_{\mathcal{L}} \right) \right) \, dx \\
\text{Finally, by the sum rule:} \\
0 \in \partial \int_{\mathcal{L}} (x^+) + \frac{1}{\lambda} \left(x^+ - x \right) \\
\Rightarrow \int_{\mathcal{L}} \left(\int_{\mathcal{L}} (x) \right) = \left(\frac{x - x^+}{\lambda} \right) \, dx \\
\text{or } \int_{\mathcal{L}} \left(\int_{\mathcal{L}} \left(\int_{\mathcal{L}} \right) \right) \, dx\n\end{array}
$$

 $Intuit$

If we find x with
 $\frac{11}{11}$ we find x with
 $\frac{11}{11}$ there is a close point
 $\frac{1}{12}$ that is almost stationary.

Composite optimization L-smoot Consider $m_i n$ $f(x)$ with $f(x) = h \circ G(x)$ with $f: \mathbb{R}^m \to \mathbb{R}$ and $G: \mathbb{R}^m \to \mathbb{R}$ This class of problems is neakly

convex and captures many data
\nscient for less ks (phase retrieval, matrix
\ncompletion, ...).

\nLet's consider two simple algorithms:
\nb Sobgradient method

\nUpdate:
\n
$$
x_{k+1} \in x_k - \alpha_k \leq k
$$
 with $\xi_k \in \partial f(x)$

\nOne can show that $\partial f(x) = \nabla f(x) \partial x \partial x$

\nb Gauss – Serdel method

\nUpdate:
\n $x_{k+1} \in \text{argmin} \{ h(g(x_k) + Df(x_k)(x - x_k) \} + \sum_{k=1}^{\infty} ||x - x_k||^2 \}$

\nNote that the subgradient method
\nappires to weakly, convex problems, while Gauss Seidel applies to composite problems
\nonly.

One can show that subgradient
descent achieves a rate of Much slove!
 $|| \nabla f_{\lambda}(\overline{x}_{\kappa}) || = O\left(\frac{1}{\kappa v_{4}}\right) \leftarrow \frac{Much}{{\rm{d}}mn}$ connex Much slower [Davis 4 Drusuyatskiy '18] But local convergence might be much
ferster! Define dist (x, s) = inf $||x-y||$ Theorem: Suppose that $f:\mathbb{R}^d \to \mathbb{R}$ is
 p -veakly connex, L-Lipschitz, and
 μ -sheurp, ie., let S = argmin f, μ dist(x, s) = $f(x)$ - min f . If x_0 is such that d ist $(x_0, s) \leq \frac{1}{2} \frac{u}{\rho}$, then
the iterates of subgradient descent
with $u_{1c} = \frac{f(x_0) - minf}{\|g_x\|^2}$ satisfy $disf(x_{k+1}, s)^2 \leq (1 - \frac{m^2}{2L^2}) dist(x_{k, s})^2$ Proof: If x_o lies in S there is nothing

\n to prove
$$
\cos kx = 0
$$
. Let's show $\frac{\pi}{2} \neq 0$,
\n assume it $\cos kx = 0$, then $3 \overline{x} \in S$
\n and \sqrt{x} , \sqrt{x} = $\frac{\pi}{2}(x_0) - \frac{\pi}{2}(x_0)$ $\leq \frac{\pi}{2}$ as $\frac{\pi}{2}$
\n Subgulation's $\Rightarrow \leq \frac{\pi}{2}(x) + \frac{\pi}{2} |x_0 - \pi|^2 - \frac{\pi}{2}(x_0)$
\n is $\frac{\pi}{2} \text{dist}^2(x_0, s)$,
\n which contradicts $\frac{d}{3} (x_0 + x_0) = \frac{1}{2} \frac{\pi}{\beta}$.
\n Then,
\n $\ln x_1 = \pi \ln^2$
\n $= \ln x_0 - k_0 \leq 0 - \pi \ln^2$
\n $= \ln x_0 - \pi \ln^2 + 2k_0 \leq 0$, $\frac{\pi}{2} - x_0 > + k_0^2 \ln \frac{\pi}{2}$
\n $= \ln x_0 - \pi \ln^2 + 2(\frac{\rho(x_0) - \rho^*}{\ln \frac{\pi}{2}}) \leq \frac{\pi}{2} - x_0 > + \frac{(\frac{\rho(x_0) - \rho^*}{\mu})^2}{\frac{\pi}{2}} \leq \frac{\pi}{2} - \frac{\pi}{2}$
\n $\leq \frac{\pi}{2} - \frac{\pi}{2}$
\n \leq

4.
$$
11x_0 - x 11^2 - \frac{\mu}{2} \frac{\mu}{2} (\frac{\mu}{2} (x_0) - \frac{\mu}{2})
$$
 $11x_0 - \overline{x} 11$

\n4. $11x_0 - \overline{x} 11^2 - \frac{\mu}{2} \cdot \frac{1}{2} = 11x_0 - \overline{x} 11$

\n5. $11x_0 - \overline{x} 11^2 - \frac{\mu}{2} \cdot \frac{1}{2} = 11x_0 - \overline{x} 11$

\n6. $11x_0 - \overline{x} 11^2 - \frac{\mu}{2} \cdot \frac{1}{2} = 11x_0 - \overline{x} 11$

\n7. $11x_0 - \overline{x} 11^2 - \frac{\mu}{2} \cdot \frac{1}{2} = 11x_0 - \overline{x} 11$

\n8. $11x_0 - \overline{x} 11x_0 - \overline{x$