

where

$$
S^{6D} = -\left(\frac{lgh^{2}}{g^{T}\theta g}\right)g \quad \text{and} \quad S^{N} = -B^{1}g.
$$

Thus $dom + word = w$ when B_{k} is *indefinite*.

Then we can select
\n
$$
\begin{array}{ll}\n\text{array in } & m_k(s^{\text{DL}}(t)) \leq \frac{\text{Decan shape}}{\text{angle Hins}} \\
\text{s.t.} & \text{Im } s^{\text{DL}}(t) \leq \Delta_k \\
\text{and this increases.} \\
\text{Another code of the number of edges, and the number of vertices, and the number of vertices
$$

approximation is good, ie, 1 is
small. Define the model objective decreate as $(m_{k}(s) = m_{k}(0) - m_{k}(s)$ (>0) and function decrease as $\Delta \oint_{K} (s) = \oint (x_{K}) - \oint (x_{K} + s) (\ge 0)$ Lemma If f has L-Lips gradient, then
for all $\|s\|_2 \leq \Delta_{\kappa}$ $|\Delta_{\text{Fic}}(s) - \Delta_{\text{Mic}}(s)| \leq \frac{1}{2}(L + \text{MB}_{kl}) \Delta_k^2$. If f has Q -Lipschitz Hessians, then
 $| \Delta f_{\kappa}(s) - \Delta m_{\kappa}(s) | \leq \frac{Q}{6} \Delta_{\kappa}^{3} + \frac{||g_{\kappa} - \nabla f(x_{\kappa})||}{2} \Delta_{\kappa}^{2}$ Proof: Expanding $| \Delta f_{\kappa}(s) - \Delta m_{\kappa}(s) | = | \{ (x_{\kappa} + s) - (f(x_{\kappa}) + v_{\kappa} s) \} |$ Triangle - $\frac{1}{2}$ s'DE1 $-\frac{1}{2}$ s⁷ B₁s) Taylor $\frac{1}{2}$ 157 $3/5$
 $\frac{1}{2}$ 157 $3/5$ $\frac{L}{2}$ 11511² + $\frac{1}{2}$ 11 Bx 11 11 S11²

Similarly
\n
$$
\leq (\frac{L}{2} + 118+11) \Delta_{\kappa}^{2}
$$
\nSimilarly
\n
$$
1 \Delta \{L(s) - \Delta m_{k}(s) \leq |f(x+s) - (f(x+1) + \sqrt{4}(x_{k})^T s + \frac{1}{2} s^{T} \sqrt{4}(k+1)s)|
$$
\n
$$
T_{0y}bot \rightarrow \frac{1}{2} \frac{1}{6} \log 16 + \frac{1}{2} \frac{1}{1} \sqrt{4}(k+1) - 8k) s!
$$
\nNext we show that the "Cavchy point"
\n
$$
P(s) = \text{for } \omega \text{ and } \frac{1}{2} \frac{1}{2} \log 4
$$
\n
$$
P(s) = \text{for } \omega \text{ and } \frac{1}{2} \frac{1}{2} \log 4
$$
\n
$$
S_{0} = \text{for } \omega \text{ and } \frac{1}{2} \frac{1}{2} \log 4
$$
\n
$$
S_{1} = \text{for } \omega \text{ and } \frac{1}{2} \frac{1}{2} \log 4
$$
\n
$$
S_{1} = \text{for } \omega \text{ and } \frac{1}{2} \frac{1}{2} \log 4
$$
\n
$$
S_{1} = \text{for } \omega \text{ and } \frac{1}{2} \frac{1}{2} \log 4
$$
\n
$$
S_{2} = \text{for } \omega \text{ and } \frac{1}{2} \frac{1}{2} \log 4
$$
\n
$$
S_{3} = \text{for } \omega \text{ and } \frac{1}{2} \frac{1}{2} \log 4
$$
\n
$$
S_{4} = \text{for } \omega \text{ and } \frac{1}{2} \frac{1}{2} \log 4
$$
\n
$$
S_{5} = \text{for } \omega \text{ and } \frac{1}{2} \frac{1}{2} \log 4
$$
\n
$$
S_{6} = \text{for } \omega \text{ and } \frac{1}{2} \frac{1}{2} \log 4
$$
\n
$$
S_{7} = \text{for } \omega \text{ and } \frac{1}{2} \frac{1}{2} \log 4
$$
\n
$$
S_{8} = \text{for } \omega \text{ and }
$$

Lemma The Cauchy point has
\n
$$
\Delta m_k(s^c) = \frac{1}{2} ||\nabla f(x_k)||min \left[\frac{||\nabla f(x_k)||}{||B_k||}, \Delta_k\right].
$$

1. If
$$
\Delta_{\kappa}g_{\kappa}^T B_{\kappa}g_{\kappa} \leq ||g_{\kappa}||^2
$$
 with $g_{\kappa} = \nabla f(\gamma_{\kappa})$
\n
$$
\Rightarrow \Delta m_{\kappa}(s^c) = \Delta ||g_{\kappa}|| - \frac{1}{2} \Delta^2 \frac{g^T B_{\kappa}}{||g_{\kappa}||^2}
$$
\n
$$
\geq \Delta ||g_{\kappa}|| - \frac{1}{2} \Delta ||g_{\kappa}||^2
$$
\n
$$
\geq \frac{1}{2} \Delta ||g_{\kappa}||.
$$

2. Otherwise

$$
\Delta m_{k}(S^{c}) = \frac{\|g_{l}\|^{q}}{g^{T}B_{k}g} - \frac{1}{2} \frac{\|g_{k}\|^{q}}{g^{T}B_{k}g}
$$
\n
$$
= \frac{1}{2} \frac{\|g_{k}\|^{q}}{g^{T}B_{k}g}
$$
\n
$$
\geq \frac{1}{2} \frac{\|g_{k}\|^{2}}{\|B_{k}\|} \qquad \text{since } g_{k}^{T}B_{k}g
$$
\n
$$
\geq \frac{1}{2} \frac{\|g_{k}\|^{2}}{\|B_{k}\|} \qquad \text{since } g_{k}^{T}B_{k}g
$$

Taken together these yield $\Delta f_{x}(s) \geq \Delta m_{x}(s) - \frac{1}{2} (L + ||B_{x}||) \Delta_{x}^{2}$ $= \frac{1}{2}$ $\|\nabla f(x_k)\|$ min $\left\{\frac{\|\nabla f\|}{\|\nabla f\|}, \Delta_k \right\}$ $-\frac{1}{z}(L+IB_{\kappa}N)\Delta_{\kappa}^{2}$ $\begin{picture}(180,10) \put(15,10){\line(1,0){155}} \put(15,10$ Full Trust Region Method We measure how much we trust a step s by $\rho_k(s) = \frac{\Delta f_k(s)}{\Delta m_k(s)}$ (goes to 1 as $\Delta_{\kappa, \widehat{\Phi}_0}$ If ρ_{κ} (s) is close to 1, this is a great step! If $\rho_k(s)$ near zero or negative, this is a bad step! Pick thresholds $0 < \eta_s$ = η_{vs} = 1, χ_o , Δ_o I lerate: p Find S_k minimizing $m_k(s)$ of At least as
s.t. IISIL Δ_k Cauchy.

\n
$$
\mu \quad \rho_{\kappa}(\omega_{\kappa}) \geq \gamma_{vs}
$$
\n

\n\n $\chi_{\kappa+1} = \chi_{\kappa+1} s_{\kappa}$ \n

\n\n $\Delta_{\kappa+1} = 2 \Delta_{\kappa}$ \n

\n\n $\Xi_{\kappa} = \frac{\gamma_{\kappa+1} s_{\kappa}}{\gamma_{\kappa+1} s_{\kappa}}$ \n

\n\n $\Xi_{\kappa+1} = \gamma_{\kappa}$ \n

\n\n $\Delta_{\kappa+1} = \gamma_{\kappa}$ \n

\n\n $\Delta_{\kappa+1} = \frac{\gamma_{\kappa}}{\gamma_{\kappa+1}} s_{\kappa}$ \n

\n\n $\Delta_{\kappa+1} = \frac{\gamma_{\kappa}}{\gamma_{\kappa}}$ \n

\n\n $\Delta_{\kappa+1} = \frac{\gamma_{\kappa+1}}{\gamma_{\kappa}}$ \n

\n\n $\Delta_{\kappa+1} = \frac{\gamma_{\kappa+1}}{\gamma_{\kappa}}$ \n

\n\n

 \mathcal{C}