Lecture 24 (Nov/28) HW 5 due Thursday Scribe? Last time Today A Trust region methods > CG continued D Characterization of , Convergence Guarantees subproblem , Nonlinear least A How about other norms? squares Trust region methods Idea: Instead of fixing a zearch direction $p_{\kappa} = B_{\kappa} g_{\kappa}$, search everywhere near χ_{κ} . Update S_K = argmin $m_K(s) = f(x_k) + \nabla f(x_k)^T s + \frac{s^T B_K s}{2}$ (4) $s \cdot t$. $||s||_2 \leq \Delta_K$ Tkt1 = TK + SK. In what follows we cover * A characterization of solutions of (**) How about other norms?

- How to solve the subproblem (xt)?
 Selection of Δκ and Descent.
 Full Trust Region Method.
 Convergence Guarantees.
- by compacteness of hs: 11s112 = 1 kg, a minimizer of (tt) is well-defined for any Bk (before we needed Bkto). We obtained indefinite Bk in the past:

 De Nonlinear Least Squares (when DF(x) was not full-rank)

 De SRI Quasi-Newton yields indefinite Bk.

 Intuitively, if mk(s) is locally accurate we should obtain descent.

Theorem (0) (4.1 in Nocedal 4 Wright)

A vector s^* is a global minimizer of min $f + g^T s + \frac{1}{2} s^T B s$ s.t. $||s||_2 \leq \Delta$ If, and only if, $||s^*||_2 \leq \Delta$ and there

exists $\lambda \ge 0$ such that (a) $(B+\lambda I) s^* = -g$

Remarks

r Necessary and sufficient conditions for nonconvex optimization are rare.

Nhen
$$\lambda = 0 \Rightarrow$$
 (b) allows for $118^{*}11 < \Delta$ (a) yields $Bs^{*}+g=0$

(C) becomes B≥0 (objective is convex)

D When
$$\lambda > 0 \Rightarrow (b)$$
 gives $\|s^*\| = \Delta$.

$$||S|| = \Delta_1 \qquad \text{ca} \qquad \text{implies} \qquad \lambda S^* = -g - BS^*$$

$$||S|| = \Delta_1 \qquad \text{hormal to } -\nabla m$$

$$||S|| = \Delta_1 \qquad \text{level sets}$$

$$||S|| = \Delta_1 \qquad \text{level sets}$$

$$||S|| = \Delta_1 \qquad \text{level sets}$$

o Theorem (9) allows us to algorithmically search for λ . By (c), $\lambda \ge -\lambda_1$ where the eigenvalues of B are $\lambda_1 < \lambda_2 \leq \ldots \leq \lambda_d$ with exervalues v,,..., vd Let's search for $\lambda \in (-\lambda_1, \infty)$, define SCh) = - (B+)I) g. We wish (b) holds, i.e., $\|S(\lambda)\|_2 = \Delta$. Requires systems Note that $\|S(\lambda)\|_{2}^{2} = \left\|\sum_{i=1}^{d} \frac{v_{i}^{T}g}{\lambda_{i}+\lambda} v_{i}\right\|_{2}^{2} = \sum_{\lambda_{i}^{T}} \frac{\left(v_{i}^{T}g\right)^{2}}{\lambda_{i}^{T}+\lambda}$

We will always have that $115(\lambda)11_2$ is decreasing after $-\lambda_1$. A root-finding method applied to $115(\lambda)11_2 - \Delta$ should yield the unique solution.

section 4.3. of Nocedal & Wright contains improvements.

Proof of Theorem (D):

(=) Let $\lambda \geq 0$ satisfying (a), (b), (c) for some S^* . Consider $\widehat{m}(s) = f + g^{T}S + \frac{1}{2} \delta^{T}(B + \lambda I) S$.

By (c), this model is convex.

By (a), S^* minimizes \widehat{m} globally.

It is easy to see that $\widehat{m}(s) = m(s) + \frac{\lambda}{3} \|s\|^{2}$.

Thus

$$m(s) \ge m(s^*) + \frac{\lambda}{2} (115^*11^2 - 11511^2)$$

By (b) = $m(s^*) + \frac{\lambda}{2} (\Delta^2 - 11511^2)$
 $\lambda 11s^*11^2 = \lambda \Delta^2$
 $check$

when s > m (s*).

feasible

(=)) Suppose s^* is a global minimizer over $115112 \le \Delta$.

If $\|S\|_2 < \Delta \Rightarrow S^*$ minimizes m(s) over \mathbb{R}^d and $BS^* = -g$ $B \ge 0$.

Check this!

Then (a), (b), (c) hold with $\lambda = 0$.

Thus, we focus on the case $11 \text{ s}^* 11 = \Delta$, which makes (b) hold for free. We will use a strong duality result that will be covered in Nonlinear 2.

Define $L(S, \lambda) = f + g^{T}S + \frac{1}{2}s^{T}BS + \lambda \left(\|s\|_{2}^{2} - \Delta^{2} \right)$

Lets consider two problems

p:=inf sup L(s, λ) and d:=sup inf L(s, λ) when a constraint qualification

holds (e.g., 3s s.t. 11511 < A) then

Note that
$$\sup_{\lambda \geq 0} L(S, \lambda) = \begin{cases} m(S) & \text{if } ||S|| \leq \Delta \\ + \infty & \text{otherwise.} \end{cases}$$

Similarly inf L(S, λ) = {inf m(s) - $\lambda\Delta^2$ if (B+ λ I) \(\text{20}\)

s otherwise.

Thus there 31 20 st B+ >IZO (c) and $m(s^*) = in f \hat{m}(s) - \lambda \Delta^2$ Since 5* achieles the infimum. Then, $\nabla \hat{m} (s^*) = 0 \Rightarrow (B + \lambda I) s^* = -g (a).$

How about other norms?

The le norm is rather special.

If we use the loo norm, the problem is intractable. Recall 11x11 = max 1xi1.

Theorem. Given a matrix BEIRdxd as input. The decision problem that arises from minimites

min x Bx s.t. $\|\chi\|_{\infty} \leq \Delta$ is NP-hard.

Proof: Reduce from MAX CUT, with B the adjacency matrix of the graph:

max $\sum_{x \in \{1:|y|^n \ (i,j) \in E} (1-x_ix_j)$ $= #E - min \sum_{(i,j)} x_i x_j$ = #E - min x TAxAij = 11(Cij) E Ej