Lecture 24 (Nov/28) HW5 due Thursday Scribe? Last time Today ·CG continued I ^D Trust region methods Convergence Guarantees i characterization of ¹ Nonlinear least subproblem squares ^D How about other norms? Trust region methods Idea : Instead of fixing a search direction Pi ⁼ Brgk , search everywhere near * ¹ . Update S= argmin mi(s) ⁼ f(u) ⁺ OfMn)'s ⁺ Bus (A) ^S .f . Isll2 ? Ak * k+ = Xp ⁺ Sk. In what follows we cover ¹ ^A characterization of solutions of (1) ^① How about other norms?

D How to save the subproblem (st) ! p selection of Δ_{κ} and Descent. D Full Trust Region Methed. 1) Convergence Guarantees

By compacteness of A s:IBI₂
$$
\leq
$$
 A_k \leq
\na minimizer of (†) is well-defined
\nfor any B_k (before we needed B_k > 0).
\nWe obtained independent B_k in the past:
\n \geq Nonlinear least squares (when OF(x)
\nwas not full-rank)
\nB R1 Quasi-Newton yields indefinite B_k.
\nIntuitively, if m_k(s) is locally accurate
\nuse should obtain descent.

Theorem (0) (4.1 in Nocedal 4 Wright)
A vector st is a global minimizer of min $f + g'$ s + $\frac{1}{2}$ s^TBs $s.t.$ $\|S\|_2 \leq \Delta$ If, and only if, $\|s\|_2 \leq \Delta$ and there

exists
$$
\lambda \ge 0
$$
 such that

\n(a) $(B + \lambda I) S^* = -g$

\n(b) $\lambda (A - \|S^*\|) = 0$ *Complementary*

\n(c) $6 + \lambda I \ge 0$

Remarks

- I Necessary and sufficient corditions for
ronconvex optimization are rare.
- D When $\lambda = 0$ => (b) allows for $||S^*|| < \Delta$ (a) yields $Bs^*+g=0$
 $\begin{pmatrix} 1^{st} \text{ order} & \text{measurable} \\ \text{conditrons} \end{pmatrix}$ (C) becomes $B \ge 0$

(objective is convex)

When
$$
\lambda > 0
$$
 \Rightarrow (b) gives $\|\mathbf{s}^* \| = \Delta$.

\n1|5|| = Δ_1 (a) implies $\lambda \mathbf{s}^* = \mathbf{0} - \mathbf{B} \mathbf{s}^*$

\n1|5|| = Δ_1 (b) gives $\lambda \mathbf{s}^* = \mathbf{0} - \mathbf{B} \mathbf{s}^*$

\n1|5|| = Δ_1 (c) implies $\mathbf{0} + \mathbf{m} \mathbf{s}^*$

\n1|5|| = Δ_1 (d) implies $\lambda \mathbf{s}^*$ is the result of $\mathbf{0} + \mathbf{m} \mathbf{s}^*$

We will always have that $ns(\lambda)11_2$ is decreasing after λ_1 . A root-finding
method applied to $\|S(\lambda)\|_2$ - Δ should girld" the unique solution. Section 4.3. of Nocedal & Wright contains improvements. Proof of Theorem (B): (=) Let 20 satisfying (a), (b), (c)
for some s* Consider $\hat{m}(s) = \int f g^{T} S + \frac{1}{2} g^{T}(B + \lambda I) S.$ By (c), this model is convex. By (α) , S^* minimizes in globally. It is easy to see that $\hat{m}(s) = m(s) + \frac{1}{2}$ $\|s\|^2$. Thus $m (s) \geq m (s^*) + \sum_{2} (115 + 11^{2} - 1151^{2})$ $By^{(b)}$ 2 m(s^{*}) + $\frac{\lambda}{2}$ (Δ^2 - 151²) λ lis^{*} l² = λ Δ^2

Check

 \geq

when s \geq $m(s*)$. feasible (=) suppose s* is a global minimizer over $||5||_2 \le \Delta$. If $\|S^n\|_2 < \Delta$ => S^* minimizes m(s) over \mathbb{R}^d and 80° = -g Bz o. Check this! Then (a) , (b) , (c) hold with $\lambda = 0$. Thus, we fecus on the case $\|\mathbf{s}^k\| = \Delta$, which makes (b) vold for free. We will use a strong diality result
that will be covered in Nonlinear 2. Define $L(S, \lambda) = f + g^T s + \frac{1}{2} s^T B s + \lambda (\|\mathbf{s}\|_2^2 - \Delta^2)$ Let's consider two problems $p:=inf_{s\in S} supp L(s,\lambda)$ and $d:=sup_{s\in S} inf L(s,\lambda)$ when a construint qualification holds $(e.g., 3s sf. 11s1 < \Delta)$ then

$$
\rho = q.
$$

\nNote that
\n
$$
sp L(S, \lambda) = \begin{cases} m(s) & \text{if } |s| \leq \Delta \\ +\infty & \text{otherwise.} \end{cases}
$$

\nSimilarly
\n
$$
inf_{s} LG_{s}\lambda = \begin{cases} inf_{s} \hat{m}(s) - \lambda \Delta^{s} & \text{if } (B + \lambda I) \in \Delta \\ -\infty & \text{otherwise.} \end{cases}
$$

\nThus there $3\lambda \geq 0$ st $B + \lambda I \geq 0$ (c) and
\n
$$
m(s^{*}) = inf_{s} \hat{m}(s) - \lambda \Delta^{s}
$$

\nSince s^{*} achieves the infimum. Then,
\n $\nabla \hat{m}(s^{*}) = 0 \Rightarrow (B + \lambda I) s^{*} = -g$ (a).
\nHow about other norms?
\nThe l_{λ} norm is rather special.
\nIf we use the l_{∞} norm, the problem
\nis intrachable. Recall
\n
$$
|| \hat{x} ||_{\infty} = \max |x_{i}|.
$$

Theorem. Given a matrix BEIR^{dred} as input. The decision problem that arises from minimizes $m_1 n \quad \chi^{\tau} \beta x$ $S \cdot f$. $\|\chi\|_{\infty} \leq \Delta$ is NP - $hard.$ Proof: Reduce from MAXCUT, with
B the adjacency matrix of the graph: $\sum_{x \in \{1, 1\}^n} (1 - x_i x_j)$ D_{1} = #E - min $\sum_{(i,j)} x_{i} x_{j}$
= #E - min $x^{T}Ax$ $A_{ij} = 1\{\vec{u}_{,j}\}\in E\}$