Lecture 23 Scribe? Last time Today L-BFGS ^I ^D CG continued ^a Conjugate gradient Convergence Guarantees method ¹ Nonlinear least squares

Recall from last class
\nLemma 7: Let
$$
x_0
$$
 and $s_1, ..., x_k$ be any
\nvectors. Consider x_{k+1} given by
\n(x), then $\nabla f(x_{k+1})$ is orthogonal
\n(in the standard sense) to
\nspan $(s_1, ..., s_k)$.
\nProof: Equivalently
\n $y_t \in R$ $f(x_0 + S_y)$
\n $y_t \in R$
\nBy 1*-order optimality conditions:

5
$$
\nabla f(x_{k+1})
$$
 is orthogonal to $\nabla f(x_{k+1})$ is orthogonal to $\nabla f(x_{k+1})$ is orthogonal. \Box
\n11 \Box \Box \Box \Box \Box
\n12 $(\angle A)$ and $\angle S_{k+1}$ is A-comyyaale to each S_{k+1} from \Box
\n \angle \angle

Theorem: The conjugate gradient method has
1. span $\{r_1, ..., r_k\}$ = span $\{s_0, ..., s_k\}$. 2. $\chi_{\kappa_{t_1}}$ is given by (\mathcal{K}) . Proof Gram-Schmidt + Lemma 7 for independence. 2. Given by Lemma M. CG simplifies a lot: Lemma: For $j< c$, $\langle r_{i+1}, s_j \rangle_{A} = 0$ Proof: Let $L = span \{r^0, ..., r^{i}y = span \{s^0, ..., s^{i}\}.$ The Theorem ensures that x₆₁, minimizes over x.+L. \Rightarrow By Lemma \mathcal{F}_{1} - $\nabla f(x_{i+1}) = r_{i+1}$ is orthogonal $10L$. $r_{i+1}^T r_j = 0$ $\forall j \leq i$ Expanding $\langle r_{i_1}, r_{j_1} \rangle_A = r_{i_1+1}^T A s_j$
= $\frac{1}{\alpha_1} r_{i_1+1}^T A (\gamma_{j_1+1} - \gamma_{j_1})$ = $\frac{1}{\alpha_i} r_{i}I_{1} ((b - A x_{j}) - (b - A x_{j+1}))$

$$
= \frac{1}{\alpha_{i}} (r_{i+1}^{T} r_{j} - r_{i+1}^{T} r_{j+1})
$$
\nThus ensures that we don't need to make
\na lot of unnecessary matrices.
\nConvergence guarantees
\nRecall that with G0 we had
\n $f(x_{k}) = min \int_{1}^{f} f(1 - \frac{1}{H_{i}(A)})^{k}(f(x_{0}) - min f)$
\nwhere $H(A) = \frac{max(A)}{num(A)} = \frac{L}{M_{i}(A)}$
\n $\frac{1}{\alpha_{i}} \frac{1}{\alpha_{i}} \frac{1}{\alpha_{i}}$
\n $\frac{1}{\alpha_{i}} \frac{1}{\alpha_{i}} \frac{1}{\alpha_{i}} \frac{1}{\alpha_{i}} \frac{1}{\alpha_{i}} \frac{1}{\alpha_{i}} \frac{1}{\alpha_{i}}$
\n $\frac{1}{\alpha_{i}} \frac{1}{\alpha_{i}} \frac{1}{\alpha_{i}}$
\n $\frac{1}{\alpha_{i}} \frac{1}{\alpha_{$

- We are not going to prove this result.
as the proof involves some matrix and ysis and uses Chebycher polynomials. Remarks:
	- D The convergence is way better if $K(A) \approx 1$. A natural idea is to precondition: invertible $PAP'g = Pb$ $\Rightarrow \chi = P^T A$ is a solution of $Ax = b$. Active research area: How to come up with good preconditioners?
	- b For linear systems CG is often preferred over AGD. One reason is it offers faster convergence when eigenvalues are clustered, e.g.,

b How about asymmetric 4?
GMRES is a popular algorithm that updates $\dot{\gamma}_{k+1} = \arg min \frac{1}{2} ||Ax - b||^2$ Computed
Krywy subspecte. S.t. $xe x_0 + L_k$ where $L_{\kappa H^2}$ span (ro, Aro, A²ro, ..., A^krof. By the Caley-Hamilton Theorem $A^{-1}b \in L_n$. This was invented by Saad and Schultz in 1986. Krybu subspace methods (CG, GMRES,...) are one of the Top 10 algorithms of the past century (according to SIAM). D How about extensions for general 2? They exist, but the guarantees and
performance are not as strong;
see Chapter 5.2 of Nocedal 4 Wright.

Nonlinear least squares
\n
$$
cos\theta
$$
 as some we have a mapping
\n $sin\theta$ as θ as θ
\n $sin\theta$ as θ
\n $cos\theta$ as θ
\n $cos\theta$ as θ and θ
\n $cos\theta$ as θ and θ
\n $cos\theta$ as θ and θ and θ
\n $cos\theta$ and θ are θ
\n $cos\theta$ and θ
\n $cos\theta$ and θ are θ
\n cos

$$
P_{k} = \underset{L}{\text{arg min}} P_{k} = \underset{L}{\text{arg min}} P_{k} = \underset{L}{\text{arg min}} P_{k} = \underset{L}{\text{arg min}} P_{k} = \frac{1}{2} P^{T} \nabla r(X_{k})^{T} \nabla r(X_{k})
$$
\n
$$
\nabla r(X_{k})^{T} \nabla r(X_{k}) Q_{k} = - \nabla r(X_{k}) r(X_{k})
$$
\n
$$
P_{k} = \underset{L}{\text{arg min}} \frac{1}{2} \left| \frac{r(X_{k}) + \nabla r(X_{k}) p}{\text{arg min}} \right|_{2}^{2}
$$
\n
$$
P_{k} = \underset{L}{\text{arg min}} \frac{1}{2} \left| \frac{r(X_{k}) + \nabla r(X_{k}) p}{\text{argmin}} \right|_{2}^{2}
$$
\n
$$
P_{k} = \underset{L}{\text{arg min}} \frac{1}{2} \left| \frac{r(X_{k}) + \nabla r(X_{k}) p}{\text{argmin}} \right|_{2}^{2}
$$
\n
$$
P_{k} = \underset{L}{\text{arg min}} \frac{1}{2} \left| \frac{r(X_{k}) - \text{argmax}}{\text{argmin}} \right|_{2}^{2}
$$
\n
$$
P_{k} = \underset{L}{\text{argmin}} \frac{1}{2} \left| \frac{r(X_{k}) - \text{argmax}}{\text{argmax}} \right|_{2}^{2}
$$
\n
$$
P_{k} = \underset{L}{\text{argmin}} \frac{1}{2} \left| \frac{r(X_{k}) - \text{argmax}}{\text{argmax}} \right|_{2}^{2}
$$
\n
$$
P_{k} = \underset{L}{\text{argmin}} \frac{1}{2} \left| \frac{r(X_{k}) - \text{argmax}}{\text{argmax}} \right|_{2}^{2}
$$
\n
$$
P_{k} = \underset{L}{\text{argmin}} \frac{1}{2} \left| \frac{r(X_{k}) - \text{argmax}}{\text{argmax}} \right|_{2}^{2}
$$
\n
$$
P_{k} = \underset{L}{\text{argmin}} \frac{1}{2} \left| \frac{r(X_{k}) - \text{argmax}}{\text{argmin}} \right|
$$

(Question: What can we do when
$$
B_k
$$

is not positive definite? \nLevenberg - Marguardt Method \n\n[den: Bypass the lock of unique solutions by adding a norm constraint: \n $(::)$ $Pr:1 = argmin \frac{1}{2} ||r(x_k) + Tr(x_k)^T p||_2^2$ \n\nThus, the need to pick α_k , but forces to pick α_k . \n\n(a: How do we pick Δ_k ? \n\n(b: How do we look Δ_k ? \n\n(b: How do we solve (:')? \n\n(b: Will cover trust-region, other the break.