Lecture 22 Scribe? HW 5 out today Last time Today & Convergence guaran & L-BFGS tees for BFGS. & Conjugate gradient & Proof

L-BFGS
With BFGS, we solved multiple problems
+ We have descent:
+ Local superlinear convergence
+ Only have to compute
$$\nabla f(X_k)$$
 per iter.
- However, we have a storage cost of
 $O(d^2)$. Thus it only works up to
 $d = 10^4 \cdot 10^5$ (on personal).

To tackle higher sizes ve can forget far away iterates.

In HWS you'll show that BFGS updates $B_{ik}^{-1} = B_{0}^{-1} + \alpha_{i} \omega \omega_{i}^{T} + \dots + \alpha_{2k} \omega_{2k} \omega_{2k} \omega_{2k}$ Instead of keeping all 2k vectors we can just keep that last m where m ~ 2-30 (usually). This leads to O(dm) memory when $B_0' = I$. Tor any other simple to apply linear map. Because $B_{k}^{-1} \nabla f(X_{k}) = \nabla f(X_{k}) + \sum_{j=k-m}^{k} \alpha_{j}(w, \nabla f(X_{k})) w_{j}.$

Conjugate gradient Gauss looking 6 for planets least squares Today we go back to $\min \frac{1}{2} \chi^T A \chi - b^T \chi$ where Aro and beikd. Optimality conditions say this is

equivalent to solving
$$Ax = b$$
.
We needed
this for neutron.
What would happened if I knew $A = VAV?$
I could simplify the problem spectral
min $\frac{1}{2}xTAx - bx = \min \frac{1}{2}(Vy)^TA(Vy) - 5Vy$
 $\frac{1}{2}eR^{4} \frac{1}{2}(Vy)^TA(Vy) - 5Vy$
 $\frac{1}{2}eR^{4} \frac{1}{2}y^TV^TVAV/Vy$
 $\frac{1}{2}eR^{4} \frac{1}{2}y^TAy - b^TVy$
This is a min $\frac{1}{2}y^TAy - b^TVy$
This is a min $\frac{1}{2}y^TAy - b^TVy$
 $\frac{1}{2}eR^{4} \frac{1}{2}y^TAy - b^TVy}$
 $\frac{1}{2}eR^{4} \frac{1}{2}eR^{4} \frac{1}{2}y^TAy - b^TVy}$
 $\frac{1}{2}eR^{4} \frac{1}{2}eR^{4} \frac{1}$

(Question: 15 there a cheaper way to
obtain a separable problem?
Conjugate vectors
Any Aro defines an inner product
$$\langle x, y \rangle_A = \chi^T A y$$

 $\langle x, y \rangle_A = \chi^T A y$
 $\langle x, y \rangle_A = 0$ for all xe spands if
 $\langle x, y \rangle_A = \chi^T A y$
 $\langle x, y \rangle_A = 0$ for all xe spands if
 $\langle x, y \rangle_A = 0$.
2. Given a linear subspace $L \subseteq \mathbb{R}^d$
 $L_A^L = \int g |\langle x, y \rangle_A = 0$ for all xe spands if
 $\langle x, y \rangle_A = \chi^T A y$
 $\int g^A(x) = \frac{\langle x, y \rangle_A}{\langle y, y \rangle_A} y$.

$$\chi = \sum_{i=1}^{k} P_{s_i}^{A}(\chi).$$

Note that if s_1, \dots, s_d are A-conjugate then $S = (s_1, \dots, s_d)$

yields = min 1 (sy)^T A (sy) - 5'sy yelR^d 2 min 1xTAx - bx = min $\sum_{i,j} y_i y_j s_i^T A s_j$ Decomposable $-\sum_{i} b^{T} S_{i} Y_{i}$ = min $\sum_{i} y_{i}^{2} S_{i}^{T} A S_{i} - b^{T} S_{i} Y_{i}$ $\Rightarrow y_{i}^{*} = \frac{b^{T} S_{b}}{S_{i}^{T} A_{S_{i}}} \Rightarrow \chi^{*} = \sum_{i=1}^{d} \frac{S_{i} S_{i}^{T} b}{S_{i}^{T} A_{S_{i}}}.$ Question: How do ue obtain conjugate vectors? Gram - Schmidt Orthogonalization

$$P_{1} = \chi_{1}$$

$$P_{1} = \chi_{1}$$

$$P_{2} = \chi_{1}$$

$$P_{2} = \chi_{1}$$

$$P_{1} = \chi_{1} - \sum_{i=1}^{n} P_{2i}^{A}(\chi_{i+i})$$

Check:

$$Span \{s_{j}\} = span \{\lambda_{j}\}$$

$$\langle s^{i+1}, s^{j} \rangle = 0 \quad \forall j < i+1$$

$$S^{i+1} \neq 0.$$

This algorithm is nice but when k = d, we have that we have to do d steps each with complexity $O(d^2) \Rightarrow O(d^2)$ complexity. 1 Matrix multiplication to compute $\langle \chi, S_i \rangle_A$. Question: Can we find a good approximation of the solution of Ax = b without doiney $O(d^3)$ work?

Conjugale Gradient Method
Idea: Construct the basis & using the
residuals

$$r_{k}=b - Ax_{k} = \nabla f(x_{k}).$$

Then select
(A) $x_{k+1} = \arg\min f(x)$
 $s.t. x \in x_{0} + spands...., s_{k}.$
Let us see two supporting results
Lemma &: Let x_{0} and $s_{1},..., x_{k}$ be any
vectors. Consider x_{k+1} given by
(A), then $\nabla f(x_{k+1})$ is orthogonal
(in the standard sense) to
 $span(s_{1},...,s_{n}).$
Proof: Equivalently
 $y^{i} \in \arg\min f(x_{0} + Sy)$
 $y \in \arg\min f(x_{0} + Sy)$
 $y \in R^{m}$
By 1st-order optimality conditions:

S^T
$$\forall f(\chi_0 + Sy^*) = 0$$

 $\Rightarrow \forall f(\chi_{k+1})$ is orthogonal to span(s,...,s)
Thanks to separability:
Lemma M: Suppose that χ_{k+1} is given
by (A) and six, is A-conjugate to
each s_i . Then,
 $\chi_{k+2} \in argmin f(\chi)$
 $s \neq \chi = \chi_{k+1} + span f s_{k+1}$
is also a solution of
 $\chi_{k+2} \in argmin f(\chi)$
 $s + \chi = \chi_0 + span f s_{1}, ..., s_{(k)}$.
(G Method
Input: $\chi_0 \in IRd$, $s_0 = r_0 = b - A\chi_0$
Update $i \leq d$:
 $\omega_i = argmin f(\chi_i + \alpha s_i) = k_{i+1} = \chi_i + \alpha_i s_i$
 $\chi_{i+1} = \chi_i + \alpha_i s_i$
 $r_{i+1} = -\nabla f(\chi_{i+1}) = b - A\chi_{i+1}$
 $S_{i+1} = r_{i+1} - \sum_{i=1}^{n} P_{si}^{si}(r_{i+1}) Gram - schmidt$