Lecture 22 Scribe? nw 5 out today Last time Today ^a Convergence guaran ^D L-BFGS tes for BFGS. ^I ^D conjugate gradient ^D Proof method

L-BFGS
\nWith BFGS, we solved multiple problems
\n+ We have document:
\n+ local superlinear convergence
\n+ Only have to compute
$$
UPCX_{k}
$$
 per iter.
\n- However, we have a storage cost-of-
\n $O(d^{2})$. Thus it only works up to
\n $d = 10^{4} \times 10^{5}$ (on personal).

To tackle higher sizes we can forget far away iterates .

In HWS you'll show that BFGS updates $B_{k}^{\prime} = B_{0}^{\prime} + \alpha_{1}w w_{1}^{\tau} + ... + \alpha_{2k} w_{2k}^{\tau}$ Instead of Keeping all 2k veelors
we can just keep that last m
where m v 2-30 (usually). This leads to O(dm) memory when $B_0^1 = I$ or any other simple to
apply linear map. Because
B¹ $\nabla f(x_{k}) = \nabla f(x_{k}) + \sum_{j=k-m}^{k} \alpha_{j}(\omega_{j}^{T} \nabla f(x_{k})) \omega_{j}.$

Congregate gradient Gauss looking
least squares Today we go back to
min $\frac{1}{2}x^{\tau}Ay - b^{\tau}x$ where $A \times 0$ and beR^d . Optimality conditions say this is

equivalent to solving
$$
Ax = b
$$
.

\nWhat would happened if it knows for Newton.

\nWhat would happened if it knows for Newton.

\nSimilarly, the problem $\frac{1}{2}x^2 + x - bx = \frac{1}{2}x^2$

\nSimilarly, $\frac{1}{2}x^2 + x - bx = \frac{1}{2}x^2$

\nUsing $\frac{1}{2}x^2 + x^2 - \frac{1}{2}x^2$

\nThus, $\frac{1}{2}x^2 + \frac{1}{2}x^2 + \frac{1}{2}x^2 + \frac{1}{2}x^2$

\nThus, $\frac{1}{2}x^2 + \frac{1}{2}x^2 + \frac{1}{2}x^2 + \frac{1}{2}x^2 + \frac{1}{2}x^2$

\nSimilarly, $\frac{1}{2}x^2 + \frac{1}{2}x^2 + \frac{1}{2}x^2 + \frac{1}{2}x^2 + \frac{1}{2}x^2 + \frac{1}{2}x^2$

\nMinimized at $x^2 = \sum_{i} x_i y_i^2 = \sum_{i} \frac{v_i y_i^2}{\lambda_i}$

\nConquaring the special decomposition is too expensive.

Question is Here a cheaper way to
\nobtain a separate vectors
\nAny A70 defines an inner product
\n
$$
\langle x,y\rangle_A = x^T A y
$$

\n $\langle x,y\rangle_{A} = x^T A y$
\n $\langle x,y\rangle_{B} = x^T A y$
\n $\langle x,y\rangle_{B} = \langle y,z\rangle_{B}$
\nLet two vectors $x \neq y$
\n $\langle x,y\rangle_{B} = \langle y,z\rangle_{B}$ is linear
\n $\langle x,y\rangle_{B} = 0$.
\n2. Given a linear subspace L $\subseteq R^d$
\n $L_A^L = \{y \mid \langle x,y\rangle_{A} = 0 \quad \forall x \in L\}$.
\n3. The projection of x onto y with $\langle x,y\rangle_{B}$
\nis $\rho_0^4(x) = \frac{\langle x,y\rangle_A}{\langle y,y\rangle_A} y$.
\nLemma: Let S., ..., S x be A-conjugate
\nparameters. Then, they are linearly
\nundergent and for all xe span{s.

$$
\chi = \sum_{i=1}^k P_{s_i}^A(\chi).
$$

Note that if $s_1, ..., s_d$ are A-conjo
gate then $S = (s_1 \cdots s_d)$

yields $\int e^{r\omega} \frac{d}{dx} e^{r\omega} \frac{d}{dx} (s\omega)^T A(s\omega) - b^T s\omega$ $m_i v_i \frac{1}{2} \chi^T A \chi - b \chi$ = min $\sum_{i,j} y_i y_j s_i^T A s_j$ Decomposable - $\sum_{i} b^T s_i y_i$
= min $\sum_{i} y_i^2 s_i^T A s_i - b^T s_i y_i$ => $y_i^* = b^T 5_i$ => $x^* = \sum_{i=1}^d \frac{s_i s_i^T b_i}{s_i^T A s_i}$. Question: How do me obtain conjugate vectors? Gram - Schmidt Orthogonalization

Input: A 70, and linearly independent
$$
x_1, ..., x_k
$$

\nOutput: $s_1, ..., s_k$ A-conjugates $s_1 + ...$

\nSpan $ds_i = span \{x_i\}$

$$
0 S_1 = \chi_1
$$

\n
$$
0 Recorsively update
$$

\n
$$
S_{i+1} = \chi_{i+1} - \sum P_{s_i}^A (\chi_{i+1})
$$

Check:

\n
$$
\begin{aligned}\n &\text{Span } \{ S_{\hat{y}} \} &= \text{Span } \{ Y_{j} \} \\
&\text{S} &\text{bin } S_{j} \} &= 0 \\
&\text{S} &\text{int } \neq 0.\n \end{aligned}
$$
\n

This algorithm is nice but when
 $K = d$, we have that we have to do d steps each with complexity $O(d^2) \Rightarrow O(d^3)$ complexity. Matrix multiplication to compute $\langle x, s_{i}\rangle_{A}$. Ouestion: Can ve find a good approximation of the solution of
Ax=b without doing O(d3) work?

Conjugate Graelient Method Idea: Construct the basis rusing the
residuals $r_{k} = b - A x_{k} = \nabla f(x_{k}).$ Then select (k) $x_{k_{\tau_1}} = \arg min_{s.t.} \lim_{x \in x_0} f(x)$
s.t. $x \in x_0$ tspan $\{s_1, ..., s_k\}$. Let us see two supporting results Lemma $\overline{p}:$ Let x_0 and $s_1,...,s_k$ be any vectors. Consider x_{k+1} given by $(\frac{1}{2})$, then $\nabla f(x_{k+1})$ is orthogonal (in the standard sense) to span $\{s_1,...,s_k\}$. Proof: Equivalently $y^4 \in argmin_{y \in \mathbb{R}^k} f(x_0 + S_y)$ By 1st-order optimality conditions:

5
$$
\nabla f(x_{k+1})
$$
 is orthogonal to $\nabla f(x_{k+1})$ is orthogonal to $\nabla f(x_{k+1})$ is orthogonal to $\nabla f(x_{k+1})$ is orthogonal to $\nabla f(x_{k+1})$.
\nLemma M: Suppose that x_{k+1} is given
\nbequation of $\nabla f(x)$ and s_{k+1} is A-comjugate to $\nabla f(x)$
\n $x_{k+2} \in \operatorname{argmin} f(x)$
\n $\nabla f(x)$
\n $\nabla f(x) = x_0 + s \nabla f(x_0)$
\n $\nabla f(x_1) = x_0 + A x_0$
\n $\nabla f(x_1) = x_1 + \alpha_1 s_1$
\n $\alpha_1 s_1 + \alpha_1 s_2$
\n $\alpha_2 s_1 + \alpha_2 s_1$
\n $\alpha_3 s_1 + \alpha_4 s_2$
\n $\alpha_5 s_1 + \alpha_6 s_1$
\n $\alpha_6 s_1 + \alpha_7 s_2$
\n $\alpha_7 s_1 + \alpha_8 s_1$
\n $\alpha_8 s_1 + \alpha_1 s_2$
\n $\alpha_9 s_1 + \alpha_1 s_1$
\n $\alpha_1 s_2 + \alpha_2 s_1$
\n $\alpha_2 s_1 + \alpha_3 s_1$
\n $\alpha_3 s_1 + \alpha_4 s_1$
\n $s_{k+1} = r_{k+1} - \sum_{k=1}^n \rho_{k}^k (r_{k+1})$
\n $\alpha_{k+1} = \alpha_k s_k$