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2.1 Calculus review

2.1.1 Gradient

Consider a smooth function f : Rd → R where there exists a gradient vector field ∇f : Rd → Rd. This
gradient satisfies:

lim
ū→0̄

f(x̄+ ū)− (f(x̄) + ⟨∇f(x̄), ū⟩)
∥ ū ∥

= 0.

We can equivalently define the gradient as:

∇f(x̄) =


δf(x̄)
δx1

...
δf(x̄)
δxn

 (2.1)

The intuition for this is illustrated with the graph below. When ū is very small, it will look like the slope of
the first order approximation almost matches that of the function at x. Note that the gradient will always
give you a local approximation, not a global approximation.

Figure 2.1: Intuition for the gradient. As ū → 0̄, it aligns with f(x̄).

We say that a function f is twice differential (C2) if an operator ∇2f(x) : Rd → Rd exists ∀x s.t.

lim
ū→0̄

f(x̄+ ū)− (f(x̄) +∇f(x̄)T ū+ ( ū
T∇2f(x̄)ū

2 )

∥ ū ∥2
= 0.
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This is a more complicated expansion beyond the gradient, but it has a similar intuition. If we want to see
how this function looks as we get close to ū, we will be a quadratic function rather than a linear function.
Here we get rid of all things size ∥ ū ∥2 as opposed to getting rid of things size ∥ ū ∥ as with the previous
definition. This makes it a good approximation up to second order terms as opposed to first order terms.

Figure 2.2: Intuition for ∇2f(x) : Rd → Rd.

2.1.2 Chain rule

Theorem 2.1 Let f be a twice-differential function. Pick x̄, ū ∈ Rd, and define φ : R → R, given by
ρ(t) = f(x̄+ ū). Then:

• φ′(t) = ∇f(x̄+ tū)T ū.

• φ′′(t) = ūT∇2f(x̄+ tū)ū.

The application of chain rule is important to nonlinear optimization, because in many scenarios we only
need to analyze one direction of the function at a time.

2.1.3 First order Taylor approximation

Theorem 2.2 Let f be a function with an L-Lipschitz gradient.

(Note that f has an L-Lipscitz gradient if for some L > 0, ∥ ∇f(x)−∇f(y) ∥≤ L ∥ x− y ∥,∀x, y)

Then ∀x̄, ū ∈ Rd:

| f(x̄+ ū)− (f(x̄) + ⟨∇f(x̄), u⟩) |≤ L

2
∥ u ∥2 .

This tells us (1) that the limit is going to 0 and (2) the rate at which the limit is going to zero.
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2.1.4 Second order Taylor approximation

Theorem 2.3 Let f be a twice differentiable set with ∇2f is Q-Lipschitz. Then:

| f(x̄+ ū)− (f(x̄) + ⟨∇f(x̄), ū⟩+ 1

2
ūT∇2f(x̄)ū) | ≤ Q

6
∥ ū ∥3 .

The second-order Taylor approximation is a quadratic approximation, as opposed to a linear approximation
with the first-order.

2.2 Optimality conditions

2.2.1 Global vs local minimizers

When solving for min
x̄∈R

f(x̄) , we may encounter different types of global and local minimizers:

• A point x̄∗ is a global minimizer if ∀ū ∈ Rd, f(x̄∗) ≤ f(ū).

• A point x̄∗ is a local minimizer if there exists a small ball around it, B, s.t. ū ∈ Bϵ(x̄
∗) f(x̄∗) ≤ f(ū).

• A point x̄∗ is a strict local minimizer if there exists ϵ s.t. ∀ū ∈ Bϵ(x̄
∗) f(x̄∗) < f(ū).

Figure 2.3: Example of three types of minimizers (and maximizers).

When optimizing, we will not always reach an exactly optimal solution. Therefore, it is useful to utilize
optimality conditions, which give us a way to check whether a point is a minimizer, or at least satisfies
some conditions that minimizers satisfy: There are four types of minimizers we’ll discuss:

• First order necessary condition.

• First order sufficient condition for convex functions.

• Second order necessary condition.

• Second order sufficient condition.
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2.2.2 First order necessary optimality condition

Any global or local minimizer must satisfy the 1st order necessary optimality condition, but its fulfillment
does not guarantee a global or local minimizer. Thus making the condition necessary, but not sufficient.
Assume a function f is differentiable. Then if x̄∗ is a minimizer, it satisfies that ∇f(x̄∗) = 0.

The intuition for this definition is illustrated below. If the tangent to the point x̄∗ is non-zero, then there
must be a direction in which the function goes “downhill”, meaning that there exists a better point.

Figure 2.4: Intuition for the first-order necessary optimality condition.

Theorem 2.4 If x̄∗ is a minimizer, then ∇f(x̄∗) = 0.

Proof: Seeking contradition, assume that ∇f(x̄∗) ̸= 0.

Take u = −∇f(x̄∗)
∥∇f(x̄∗)∥ and define ρ(t) = f(x̄∗ + tū). We have ρ′(0) = ∇f(x̄∗)T ū = − ∥ ∇f(x̄∗) ∥< 0.

By definition, ρ′(0) = lim
t→0

ρ(t)−ρ(0)
t , thus for all sufficiently small t > 0 we have that ρ(t)−ρ(0)

t ≤ ρ′(0)
2 < 0.

Therefore, f(x̄∗ + tū)− f(x̄) < 0. Therefore, x̄∗ is not a minimizer, which contradicts our assumption that
∇f(x̄∗) ̸= 0.

Note that this condition is not sufficient. For example, consider the following functions, f(x) = x3 and
f(x) = −x2. For each of these functions, zero is a critical point, i.e. ∇f(0) = 0, and yet it is not a
minimizer.

Figure 2.6: Examples of non-optimality that satisfy the 1st order necessary condition.
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2.2.3 First order sufficient optimality condition for convex functions

We say that a function f is convex if ∀x, y ∈ Rd and for allt ∈ [0, 1] we have:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

Figure 2.7: Visualization of convexity, where zt = tx+ (1− t)y, the equation left-hand side is a point on the
function and the right-hand side is on the dotted line.

Theorem 2.5 If f is differentiable and convex, then x̄∗ is a global minimizer ⇐⇒ ∇f(x̄∗) = 0.


