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2.1 Calculus review

2.1.1 Gradient

Consider a smooth function f : R? — R where there exists a gradient vector field Vf : R — R?. This

gradient satisfies:
f@+u) - (f(@) +(Vf(Z),u))

lim — =0.
a—0 | @l
We can equivalently define the gradient as:
6f(2)
oz,
Vi@ =] (2.1)

of (@)
oz,

The intuition for this is illustrated with the graph below. When # is very small, it will look like the slope of
the first order approximation almost matches that of the function at x. Note that the gradient will always
give you a local approximation, not a global approximation.

Figure 2.1: Intuition for the gradient. As @ — 0, it aligns with f(Z).

We say that a function f is twice differential (C?) if an operator V2f(x) : R? — RY exists Vx s.t.

F@+ 1) — (f(@) + V(@) Ta+ (L@

a0 |z |?

=0.
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This is a more complicated expansion beyond the gradient, but it has a similar intuition. If we want to see
how this function looks as we get close to @, we will be a quadratic function rather than a linear function.
Here we get rid of all things size || 4 ||* as opposed to getting rid of things size || @ || as with the previous
definition. This makes it a good approximation up to second order terms as opposed to first order terms.

Figure 2.2: Intuition for V2f(z) : R — R4

2.1.2 Chain rule

Theorem 2.1 Let f be a twice-differential function. Pick Z,u € R?, and define ¢ : R — R, given by
p(t) = f(z +u). Then:

o O(t) =V [(z+tu)a.

o (1) = aTV2](z + tu)u,

The application of chain rule is important to nonlinear optimization, because in many scenarios we only
need to analyze one direction of the function at a time.

2.1.3 First order Taylor approximation

Theorem 2.2 Let f be a function with an L-Lipschitz gradient.
(Note that f has an L-Lipscitz gradient if for some L >0, | Vf(z) = Vf(y) <L |z —vy|,Yz,y)
Then VZ,u € RY:

.

| [z + 1) — (F(z) + (Vf(@), ) |< g

This tells us (1) that the limit is going to 0 and (2) the rate at which the limit is going to zero.
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2.1.4 Second order Taylor approximation

Theorem 2.3 Let f be a twice differentiable set with V2 f is Q-Lipschitz. Then:

| f(@ +a) = (f(2) +(Vf(@),0) + sa" V2f(Z)u) | < Q ha]®.

N =

The second-order Taylor approximation is a quadratic approximation, as opposed to a linear approximation
with the first-order.

2.2 Optimality conditions

2.2.1 Global vs local minimizers

When solving for mi}g f(Z) , we may encounter different types of global and local minimizers:
zc

e A point z* is a global minimizer if Vi € R?, f(z*) < f(a).

e A point Z* is a local minimizer if there exists a small ball around it, B, s.t. @ € B.(Z*) f(z*) < f(a).

e A point Z* is a strict local minimizer if there exists € s.t. Va € B.(Z*) f(z*) < f(a).

strict local

/ max

local max
(not strict)

e local min
strict local (not strict)
min

strict
global min

i i |
local mir¥and max\-z/

(not strict)

Figure 2.3: Example of three types of minimizers (and maximizers).

When optimizing, we will not always reach an exactly optimal solution. Therefore, it is useful to utilize
optimality conditions, which give us a way to check whether a point is a minimizer, or at least satisfies
some conditions that minimizers satisfy: There are four types of minimizers we’ll discuss:

e First order necessary condition.

e First order sufficient condition for convex functions.

e Second order necessary condition.

e Second order sufficient condition.
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2.2.2 First order necessary optimality condition

Any global or local minimizer must satisfy the 1st order necessary optimality condition, but its fulfillment
does not guarantee a global or local minimizer. Thus making the condition necessary, but not sufficient.
Assume a function f is differentiable. Then if Z* is a minimizer, it satisfies that V f(z*) = 0.

The intuition for this definition is illustrated below. If the tangent to the point Z* is non-zero, then there
must be a direction in which the function goes “downhill”, meaning that there exists a better point.

Figure 2.4: Intuition for the first-order necessary optimality condition.
Theorem 2.4 If T* is a minimizer, then V f(z*) = 0.

Proof: Seeking contradition, assume that V f(z*) # 0.

Take u = o7cst and define p(t) = f(z* + tii). We have p/(0) = Vf(z*)Ta = — || Vf(z*) |< 0.

By definition, p’(0) = lim M, thus for all sufficiently small ¢t > 0 we have that M < p’;O) < 0.
t—0

Therefore, f(z* + tu) — f(Z) < 0. Therefore, Z* is not a minimizer, which contradicts our assumption that

Vf(z*) #0. |
Note that this condition is not sufficient. For example, consider the following functions, f(z) = x3 and
f(x) = —a?. For each of these functions, zero is a critical point, i.e. Vf(0) = 0, and yet it is not a

minimizer.

Figure 2.6: Examples of non-optimality that satisfy the 1st order necessary condition.
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2.2.3 First order sufficient optimality condition for convex functions

We say that a function f is convex if Va,y € R? and for allt € [0, 1] we have:

[tz + (1 =t)y) <tf(z) + (1 =) f(y)-

Figure 2.7: Visualization of convexity, where z; = tz + (1 — t)y, the equation left-hand side is a point on the
function and the right-hand side is on the dotted line.

Theorem 2.5 If f is differentiable and convex, then T* is a global minimizer < V f(z*) = 0.



