Lecture 18 Scribe?

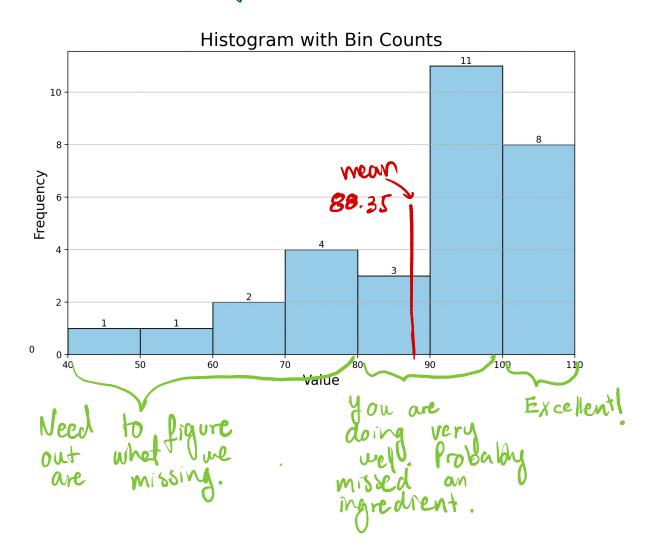
Last time

D'Convergence gravante o Computational comple D Cavasi-Newton into.

Today

- D Exam results.
- > Modified Newton
- 63 variants

Distribution of



The midterm veight can be anything between 15% -40%.

Lots of room for improvement:

P Final can be worth 65%.

D Scribe and come to OH.

L Easy 10% for participation).

New idea from last class Instead of using Tougher's approximation, consider $m_k(x) = f_k + g_k^T(x-x_k) + \frac{1}{2}(x-x_k)^T B_k(x-x_k)$ Thus, a natural strategy is to consider

 χ_{k+1} is such that $\nabla m_k (\chi_{k+1}) = 0$. Which in turn reduces to

The The Brigh.

Vatural questions: invertible.

Natural questions: invertible.

I How do we pick B_k so that we have descent?

s Can we make it cheaper periteration?

We will focus on the first guestion in this lecture.

Let's look at the geometry of a Newton step.

V²f (xx) is a symmetric, real matrix (and let's assume nonsingular). We might take an spectral decomposition:

ν² f(x_K) = V_LV^T = cost O(d³).

Pragonal. Orthogonal

$$\Lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_d \end{pmatrix}$$
 Eigenvalues

$$V = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Eigenvectors

Now we can decompose the Newton step: PK = - (NV NI) - DECXM) = - V 1 - V T D f (XK) = -V+ 1+V+ Of(xx) - V-1-V- Of(xx) Claim: pt is a "descent" direction Pk (Vf(xx) pt <0). We can easily check THOTOR = - OF (XNT V+ 1/1) T f(XN) O f (XN) S O. Symmetrically p̄ satisfies \\\ \P_k \ge 0. Thus if all eigenvalues are positive > Descent all eigenvalues are negative > Ascent ord gx \$0 so anything. mixture Lemma: If Bx > 0, then px = arg min (gxp+ptBxp) $\Rightarrow q_k^T p_k < 0.$

In particular, if $g_k = \nabla f(x_k)$, then p_k is a descent direction. Proof: Since Bx is positive definite, then programmes grip + proxp is strongly convex, then px is well-defined. Pr = -Bkgk, thus Then grpk = - grbrgk < 0 Warning: This doesn't guarantee that we have $f(X_{k+1}) \le f(X_k)$ via xme + xx - B2 Ofcxx). We only have $f(x_k + \alpha p_k) = f(x_k) + \alpha \nabla f(x_k)^T p_k + o(\alpha^2)$. Thus we need an stepsize!

Linesearch could we appred. The Armijo condition reduces to: for some no (0,1)

 $f(x_k - \alpha_k p_k) \le f(x_k) + \eta \alpha_k g_k^T p_k$ with α_k exponentially shrinking until this holds.

Modified Newton's Method Consider the following template Loop K= 0, 1, ... Compute $\nabla f(x_k)$ and $\nabla^2 f(x_k)$ 3 nethods -> Build Bx >0 (Based on \(\nabla^2 \) fexx) today. Compuls - 2-170... Compute PK = BK Of CXK) Pick & ensuring descent (Armijo) HWS you'll XK+1 + 2K+PK prove constant End loop. slepsizes also work. D Option 1 Discard nonpositive eigenvalues Get the factorization $\nabla^2 f(x_k) = V \Lambda V^T$ Define $\Lambda = \text{drag}(\Lambda_i)$ with $\lambda_i = \max_{i} \lambda_i, \epsilon_i$ Then take Bx = V_LV7.

The downside is that we loose the "mag

nitud" of the negative di. We move little when Oflak) is aligned with negative components. Pretty bad unless $\nabla^2 f(x_k) \approx \epsilon I$, in which case was good too. Option 2 keep eigenvalues with large magnitud, but make them positive Ofen, =VI Pick E20 and set λ = diag(xi) where λ;= max(1),1,ε y $B_{\kappa} = V \overline{\Lambda} V^{T}.$ $\Rightarrow P_{\kappa} = -B_{\kappa}^{-1} \nabla f(x_{\kappa})$ $= -\left(\left(V_{+} V_{\varepsilon} V_{-} \right) \left(\begin{array}{c} \Lambda_{+} \\ \varepsilon I_{-} \Lambda_{-} \end{array} \right) \left(\begin{array}{c} V_{\tau}^{T} \\ v_{\varepsilon}^{T} \\ v_{\tau}^{T} \end{array} \right) \right)^{-1} \nabla f(x_{\kappa}).$ = - V+ 1 + V + Of (xk) & descent "null space" + V-1-1-1-1 Pf(xx).

Option 3 Shift He entire spectrum Compute donin (V2f(xk)) Pick E>0 If Amin > E = O Otherwise, set &= & - \lambda_min Be = Ofexion + & I. Clearly $\lambda_i(B_k) = \lambda_i - \lambda_{min} + E \ge E$. Moreover if p=-(D2f(xk) + JI) of(xk) > as 310, p - - P2f(xil) (Newton) ⇒ as ×100, p → Ofexic) (Gradient)

| IIPII | IIO FEXICIA (descent)

Next time ue will cover convergence guarantees.