Lecture 16

Last time

- D Analysis continued
- o Convex guarantees
- D Extensions

Today

- D What's to come
- A One-dimensional Newton's method.
- d Newton's in 129.

What's to come? Winter Second-order Methods

- D Newton's Method/Solving Systems of equations.

 - D Chasi-Newton Methods. D Conjugale gradient. D Trust Region Methods.

Newton's Method

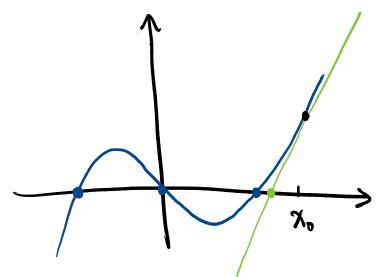
Imagine we had a system of nonlinear equations

F(x) = 0

with FIRd > 1Rd and we want to some for x. This recovers finding stationary points if $F = \nabla f$.

One-dimensional setup

Assume F: IR -> IR is smooth.



The idea of Newton's method is to lineari ze and then look for a root (zero).

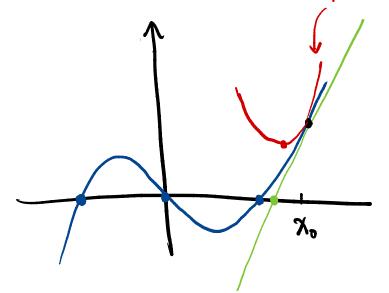
Thus, we update

Pick x kt1 s.t. = (xx) + F'(xx) (xk1-7x)=0 Note that reordering this ammounts to $\chi_{K+1} = \chi_K - \frac{F(\chi_K)}{F'(\chi_K)}$

If F = f1, then this is

 $\chi_{k+1} = \chi_k - \frac{f'(\chi_k)}{f''(\chi_k)}$ we need second order information

If $f''(x_k) > 0$ this also corresponds $x_{k+1} = \underset{x}{\operatorname{argmin}} \left\{ f(x_k) + f'(x_k)(x - x_k) + f''(x_k)(x - x_k) \right\}$



When $f''(x_k) < 0$ we don't have a convex model.

This method is really fast. As an example: Consider $F(x) = x^2 - \alpha$, then $F(x) = 0 \iff x = \pm \sqrt{\alpha}$.

In this case, Newton's method reduces to $\chi_{k+1} = \chi_k - \frac{f(\chi_k)}{f(\chi_k)} = \chi_k - \frac{\chi_k^2 - \alpha}{2\chi_k} = \frac{1}{2} \left(\chi_k - \frac{q}{\chi_k}\right).$

For a=2 and x=1, we obtain

 $\chi_0 = 1 \dots$

 $\chi_1 = 1.5...$

72 = 1.41 ...

43 = 1.41421 ...

 $\chi_4 = 1.41421356237...$

correct digits 2 2k x₇ ~ 60 correct Aside: This algorithm was used in the videogame (hunke 3 (1933) to find 1/1x.

Avick review of convergence naming

Suppose S_k →0

(This could be the objective gap, the distance to a solution or $\|\nabla f(\mathbf{x}_k)\|$).

We say that

- D S_{K} converges linearly if $\exists CE(0,1)$, $N \ge 0$ s.t $\forall K \ge N$ $S_{K+1} \le CS_{K}$
- D &x converges sublinearly if no such c exists.
- A δ_{κ} converges superlinearly if $\exists d c_n f \in [0, 1)$, $N \ge 0$ s.t. $c_{\kappa} \to 0$ and $\forall k \ge N$ $\delta_{\kappa_{tl}} \le c_{\kappa} \delta_{\kappa}$.
- δ δ_{K} converges quadratically if $\exists c \in (0,1)$, $N \ge 0$ δ_{K} . $\forall K \ge N$ $\delta_{K+1} \le C \delta_{K}^{2}$.

This is super linear since $cg_k \rightarrow 0$.

Secunt Method

If we don't know F'(xx) it is reaso rable to approximate it with

$$F(x_k) \approx \frac{F(x_k) - F(x_{k-1})}{x_k - x_{k-1}}$$

and thus

$$\chi_{k+1} \leftarrow \chi_k - \left(\frac{\chi_{k-1}}{F(\chi_k) - F(\chi_{k-1})}\right) F(\chi_k).$$

Under modest regularity conditions, we have $x_k \to x^*$ with $\pm Cx^* + = 0$.

Moreover

where $V = \sqrt{5-1} = 1.618...$ is the Golden ratio. Thus convergence is superlinear, but not quadratic.

Newton in Rd

In a bunch of applications we want to solve systems of equations

$$F(x) = 0$$
 with $F: \mathbb{R}^d \to \mathbb{R}^d$ smooth.

For example:

0 Optimization $\nabla f(x) = 0$.

- D Computer graphics
- o Physics (Equilibrium states thermodynamics)
- A Robotics (Inverse kinematris)

> ...

Key idea: Linearize F(X), then solve linear system.

Recall that the Jacobran of FCX) is

$$\nabla F(x) = \begin{bmatrix} \frac{\partial F_{1}(x)}{\partial x_{1}} & \dots & \frac{\partial F_{1}(x)}{\partial x_{d}} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{d}(x)}{\partial x_{1}} & \dots & \frac{\partial F_{d}(x)}{\partial x_{d}} \end{bmatrix}.$$

When $f:\mathbb{R}^d\to\mathbb{H}$ is C^2 , The Messian $\nabla^2 f$ is the Jacobian of ∇f .

Then, Newton's method updates by Finding χ_{k+1} s.t. $F(\chi_k) + \nabla F(\chi_k) (\chi_{k+1} - \chi_k) = 0$.

If $\nabla f(x_{k+1})$ is full rank, then the system has a unique solution and Newton's direction

 $\gamma_{k+1} = \chi_k - \nabla F(\chi_k)^{-1} F(\chi_k).$

In optimatizon land this is equivalent to $\pi_{k+1} = \pi_k - \nabla^2 f(x_k) \nabla f(x_k)$.

Notice that this is equivalent to constructing a second-order approximation of f at x_k :

 $f_{\kappa}(x) = f(x_{\kappa}) + \nabla f(x_{\kappa})^{T}(x - x_{\kappa}) + \frac{1}{2}(x - x_{\kappa}) \nabla^{2} f(x_{\kappa})(x - x_{\kappa})$ and finding a critical point of f_{κ} .

Unlike before we don't have that f_{κ} is convex:

- o If $\nabla^2 f(x_k) \wedge O \Rightarrow f_k$ is concave Ascent direction.
- Descent direction

 Descent direction
- o If $\nabla^2 f(x_k)$ is indefinite $\Rightarrow f_k$ has a saddle.

Convergence of Newton's method We state the following without a proof, but we'll get back to a nonasymbotic version next class Theorem (Local convergence)
Let $F: \mathbb{R}^d \to \mathbb{R}^d$ be continuously differentiable and assume $F(x^*) = 0$ for some x^* . If $\nabla F(x^*)$ is nonsingular, then some neightborhood S of x^* we have that if $x_0 \in S$, the iterates of Newton's method satisfy

 $x_k \in S$, $x_k \rightarrow x^*$, $\nabla F(x_k)$ nonsingular.

Warnings

D Global convergence is not granted.

D If $\nabla F(x_k)$ is singular the method is not well-defined.

D Even if $\nabla F(x_k)$ is nonsingular, we can have numerical issues

F(x) = exp (-1/x2)

True vools True vools