
Lecture 14

HW 3 due an hour ago
Midterm release tomorrow at I am .

Last time Today
↳ Black-box convex optimization & Stochastic Gradient

Descent
$ Things that break I DExamples↳Analysis D Analysis

Stochastic Gradient Methods

Before we had an exact gradient oracle
x 1 > Yf(x) .

Now we have an stochastic gradient oracle
x + > g(X ,E, random variable

iid at each call

Such that

#g(x , z) = 0 f(x) Iunbiased (

#(11g(x ,z) - 0f(x)1Y = 62 (Bounded
- variance)

E [IgCx ,z . 18fCXI

A natural algorithm updates
Draw ZK : qk
en

Xin1* X-Xx g(X,, E i) .



Relevant properties of the expectation
D Linearity
Given X.. ..., Xn r.v . and constants
↓
..
.. .. An ,

we have

E [EdiX :] = [diEX :

D Tower law

Given two random variables X
, Y

Ex (E 2Y1x]] = E [Y]
conditional
expectation

Examples of oracts

Example 1 : Coordinate approach
-

We want to solve min f(x) with

f : R
* -> R

.

Pick it (1, ..., dy uniformly at random.
Set g(x , i) = d · (x) .e :

Let's check that it is unbiased



E [q(x1] : I [dof(x) -e.
= 2 (x) . e: = 1 f(x) .

Check that 0 depends on the diml .

Example 2 : Finite sum

Suppose we want to minimize

min E file) we have seenI many examples

Then

g(x , i)
= 1 fi(x)

yields an unbiased gradient oracle .

One can prove that if Of : --Lips

#[11fi(x) -28 fix)12] =22 IXI

Example 3 : Stochastic programming (Infinite sum)
Suppose we want to solve

min E f(x , z)
X z

and we only have access to samples z .

Then

q(x, z) = P f(X , z) .
This is unbiased by definition .



Example 4 :Improved oracles for finite
soms

Idea 1 : look at batches/minibatches
of samples .

Pick SELI, ..., ny with 191 = k

uniformly at random with or without
replacement .

Take
q(x , 5) = Es fil

which is clearly unbiased .
Intrition

:

Consider i , id . r.v X ,, ..., Xy GR"

Var (2 (i)= 1 var (X :)
K Better to consider K21

Idea 2 : Variance reduction

compute full gradients every now
and

then V &C) = [ 7 :/X) .

Pick igh,
, ..., my uniformly at random

g(x , i)= 0 f(x) + 0fi(x) - vfi(Y)
e
small when -*
is small and I
is -Lipschitz .



It is also unbiased

E[g(x , i)] = 0 f(x) + Evfix)- E Pf :Y
- -
These two cancel
out

One can show that when If : -Lips , then

E [10f(Y)-0f(x), + (Vf(x) -of:(x))112] = 421x- * 112I

-
canbe made

g(x , i) - vf(x) small.

SURG [Johnson, Zhang , 2013] .

Analysis for nonconvex functions .
Theorem Suppose f :R

*
-IR is L-smooth

--

and gCx, z) is an unbiased estimator

such that

E(1g(x,z)- gf(x)12) =82 FX
.

Then the iterates of stochastic

gradient descent with 0 < X < 2/

satisfy
(f(0) -minf)+o ais

⑧
-E(m* 1* f(xi)11] = [xx) +-

1= L

k= 0
a)
t



Prof : By the Taylor ApproximationTheorem

f(x x+1) = f(Xx) + 8 f(x ,) (X,+- Xx) + ll4ai Pell
= f(XK) - xn8f(x)" Gr + llgl

Conditioning on XK random
because of Ze

E(f(x ,+1)(Xx] = f(x ,) - x ,k[Xf(x)Ty , /xi)
t ↳xE [118 :11") X ,]Linearity I

I
= f(x,) - x -Xf(Yx)T E(g ,/xi)
+ ↳xE[118x11"/X ,]
I

=f(Xx) - &x 115 f(X x)12
-<[02 + 18f(x ,)1]
=f(X,) - (xx + 2) 187Xx)l

+(x g?K

I

By Tower Law

# [f(X -+)] = # Acy-
Kn + D EIf

+Lx3 8?



By recursively applying this formula
# [8Cx+)] = Ef(o) - I (a n - 2x) EIVfex,Y

k
= 0 I

+Se
The result follows from reordering
and using the fact that

E in in 10 f(x)12 ola-i)I1 = T
↳ Mn-) #[1880x1R] ·

[l

Next time we will make a

o() in the general case and

0 ( "/k2) in the convex call.


