Lecture 13

HW3 due Thursday

Midterm posted on Friday Morning

Scribe for Today?

Last time

- D Guarantees for strongly convex
- Dackward Method.
- & More proximal methods
- & Alternating Projections

Today

- 1> Black-box convex optimization
- o Things that break
- > Analysis

and that we can guery for any x f(x) and $g(x) \in \partial f(x)$.

We already saw a problem like this

in HW3:

min \sum max $\{0, 1 - y, x, w\} + \frac{\lambda}{2} \|w\|^2$. where computing a subgradient was easy, but solving the prox was hard.

A natural idea is to generalize GD $\chi_{k+1} \leftarrow \chi_k - \alpha_k g(\chi_k)$.

Things that break
Smooth optimization land was rather
nice. In nonsmooth optimization
we cannot have:

Guarantees with constant stepsize

Why? f(x) = |x| $x_o = 2.5\alpha$ Fixed step size

No guarantee of descent Why? f(x,, x2) = 31x,1+1x21 with $\chi_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ No descent regardless of d $\partial f(0,1) = 3\partial(|x_1|)(0,1)$ + 2(1x21)(0,1) =) (3,1) € ∂f(0,1) 1 x 1 f(x) < f(x,)} Two perspectives on subgradients Sideriew P(y) f(x) + < g(x), y-x)

We can also use this perspective to derive

$$\chi_{k+1} = \underset{\chi}{\operatorname{argmin}} \left\{ \int (\chi_{k}) + \left(g(\chi_{k}), \chi - \chi_{k} \right) \right\} \\
+ \frac{1}{2\kappa_{k}} \|\chi - \chi_{k}\|^{2}$$

at x, then optimal is here.

If f(x)-min f>E => f(x)-E>minf if x' is such g'(y-x) z-E => f(x1)> f(x) - E> min f.

Lemma Assume that f: Rd > R is convex achieving a minimum at x* Then the iterates of subgradient descent selisfy. 1 x x + 1 - 2 x 1 2 / 1 x x - 2 x 1 - 2 x (f(xx) - f(x*)) + x 2 lgi. Proof: By definition $\|x_{\kappa+1} - x^*\|^2 = \|x_{\kappa} - \alpha_{\kappa} g_{\kappa} - x^*\|^2$

=
$$\|x_{K} - x^{*}\|^{2} - 2\alpha_{K} \langle g_{K}, x_{K} - x^{*} \rangle$$

+ $\alpha_{K}^{2} \|g_{K}\|^{2}$
+ $\alpha_{K}^{2} \|g_{K}\|^{2}$
+ $\alpha_{K}^{2} \|g_{K}\|^{2}$.

Intuition

We will get closer to the solution if $-2\alpha_{k}(f(x_{k}) - f(x^{*})) + \alpha_{k}^{2} \|g_{k}\|^{2} < 0.$ We can achive that if $|g_{k}|^{2}$ is bounded.

Lemma. If f is M-Lipschitz, then for all xeird, geofa),

11 g 11, < M.

Proof: Seeking contradiction assume 11g 11z > M for some $g \in \partial f(x)$. Then, if we take y = x + g $f(y) \stackrel{?}{=} f(x) + g^{T}(y - x)$ $\stackrel{?}{=} f(x) + 1g1^{2}$

> f(x) + Ig11 M.

Thus, $f(y) - f(x) = M \|y\| = M \|y - x\|$.

Exercise: Prove that the opposite implication in the previous Lemma also holds.

Theorem: Assume that $f:\mathbb{R}^d \to \mathbb{R}$ is an M-Lipschitz function, and suppose χ^* cargininfor. Then, the iterates of subgradient descent satisfy

min of (x_k) - min f $\leq \frac{\|x_0 - x^2\|^2 + L^2 \sum_{k=0}^{T} \alpha_k^2}{2 \sum_{k=0}^{T} \alpha_k}$

In particular, if $\sum_{k=0}^{\infty} \alpha_{k}^{2} < \infty$ and $\sum_{k=0}^{\infty} \alpha_{k} = \infty$,

 $\lim_{T\to\infty} \min_{k\in T} \{f(x_k) - \min_{f}\} = 0.$

Proof: For any K we have $\frac{1}{2} \alpha_{K} \left(f(x_{K}) - f(x^{*}) \right) \leq \frac{1}{2} \frac{1}{2}$

Second Lemma
$$\frac{1}{2} \|x_{k} - x^{*}\|^{2} - \|x_{k_{1}} - x^{*}\|^{2} + L^{2} x_{k}^{2}.$$

Summing up for KET

2 Z X x (f(xx) - f(x*1) \(\) | | | | \(\) \(\) \(\) | | | \(\) \(\) \(\) | | | \(\) \(\) \(\) | | | \(\) \(

Lower bounding by min (f(xx) - f(x*)), yields

min $f(x_k) - f(x^*) \leq \frac{\|x_0 - x^*\|^2 + L^2 \tilde{\Sigma} \alpha_k^2}{2 \tilde{\Sigma} \alpha_k}$

Taking limits on both sides gives

lim min flx_K) - flx*) $\in \frac{\|\chi_0 - \chi^*\|^2}{2 \sum_{k \in I} \chi_k}$

when $\sum_{x} x_{x} = \infty$ and $\sum_{x} x_{x}^{2} < \infty$, the right hand side goes to zero \Box

Corollary: If we set $\alpha_k = \alpha$, then

min $(f(x_k) - minff \leq \frac{\|x_0 - \chi^4\|^2}{2\alpha T} + \frac{M^2\alpha}{2}$

If we set $\alpha = E/M^2$ and $T \ge \frac{M^2 \|\chi_0 - \chi^*\|^2}{E^2}$, min { f(xx) - minff < E. Proof: First inequality follows trivially from the Theorem. Then $\frac{\| v_6 - v^* \|^2}{2 \kappa \tau} + \frac{M^2 \alpha}{2} = \frac{\| v_6 - v^* \|}{2 \epsilon \tau} + \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

Thus we need $T = \Omega(\frac{1}{\epsilon})$ for an ϵ -min. With GO we needed $T = \Omega(\frac{1}{\epsilon})$ and with AGO we needed $T = (\frac{1}{\epsilon})$.

Theorem There exists a convex M-Lipschitz function f: IRd > IR and a subgradient oracle gex) & F(x) s.t. any algorithm s.t

Satisfies that for K<d

 $f(x_k)$ - min $f \ge \frac{M \|x_0 - x^*\|}{2(2+V_{k+1})}$.

You can find the proof in Mesterov's Book (Theorem 3.2.1)

Extensions

There are results for

- Strongly convex functions $O(\frac{1}{\epsilon})$
- Weakly convex functions O(=1).