Lecture 13

HW3 due Thursday
Midterm posted on Friday Morning
Scribe for Today?

Last time

▷ Guarantees for strongly convex
▷ Accelerated Forward Backward Method.
▷ More proximal methods
▷ Alternating Projections

Today

▷ Black-box convex optimization
▷ Things that break
▷ Analysis

Black-box convex optimization

What happens when we cannot solve for the prox?

Now we only assume that \(\mathbb{R} \) given a problem

\[
\min_{x \in \mathbb{R}^d} f(x)
\]

and that we can query for any \(x \)

\(f(x) \) and \(g(x) \in \partial f(x) \).

We already saw a problem like this
in HW3:

\[\min \sum \max \{0, 1 - y_i x_i w_i\} + \frac{\lambda}{2} \|w\|^2 \]

where computing a subgradient was easy, but solving the prox was hard.

A natural idea is to generalize GD

\[x_{k+1} \leftarrow x_k - \alpha_k g(x_k). \]

Things that break

Smooth optimization land was rather nice. In nonsmooth optimization we cannot have:

Guarantees with constant stepsize

Why? \(f(x) = 1 \times 1 \quad x_0 = 2.5 \alpha \)

Fixed step size
No guarantee of descent

Why? \[f(x_1, x_2) = 3|x_1| + |x_2| \]

with \[x_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \]

\[\partial f(0,1) = 3\partial(x_1)(0,1) + 2\partial(x_2)(0,1) \]

\[= \begin{bmatrix} 3[-1,1] \\ 1 \end{bmatrix} \]

\[\Rightarrow (3,1) \notin \partial f(0,1) \]

No descent regardless of \(\alpha \rightarrow (3,1) \)

\(\{ x \mid f(x) \leq f(x_0) \} \)

Two perspectives on subgradients

Sideview \(f(y) \)

We can also use this perspective to derive

\[x_{k+1} = \arg \min_x \left\{ f(x_k) + \langle g(x_k), x - x_k \rangle + \frac{1}{2\alpha_k} \| x - x_k \|^2 \right\} \]
Lemma: Assume that $f: \mathbb{R}^d \to \mathbb{R}$ is convex achieving a minimum at x^\ast. Then the iterates of subgradient descent satisfy

$$ \|x_{k+1} - x^\ast\|^2 \leq \|x_k - x^\ast\|^2 - 2 \alpha_k (f(x_k) - f(x^\ast)) + \alpha_k^2 g_k^2. $$

Proof: By definition

$$ \|x_{k+1} - x^\ast\|^2 = \|x_k - \alpha_k g_k - x^\ast\|^2 $$

If not ε-optimal at x, then optimal is here.

If $f(x) - \min f > \varepsilon \implies f(x) - \varepsilon > \min f$

If $x' \text{ is such } g^T(y - x) \geq -\varepsilon \implies f(x') \geq f(x) - \varepsilon > \min f$.

\[
\begin{align*}
&= \|x_k - x^*\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \\
&\quad + \alpha_k^2 \|g_k\|^2 \\
&\leq \|x_k - x^*\|^2 - 2\alpha_k (f(x_k) - f(x^*)) \\
&\quad + \alpha_k^2 \|g_k\|^2. \\
\end{align*}
\]

\begin{itemize}
 \item **Intuition**
 We will get closer to the solution if
 \[
 -2\alpha_k (f(x_k) - f(x^*)) + \alpha_k^2 \|g_k\|^2 < 0.
 \]
 We can achieve that if \(\|g_k\|\) is bounded.

 \item **Lemma**
 If \(f\) is \(M\)-Lipschitz, then for all \(x \in \mathbb{R}^d\), \(g \in \partial f(x)\),
 \[
 \|g\|_2 \leq M.
 \]

 \item **Proof**
 Seeking contradiction, assume \(\|g\|_2 > M\) for some \(g \in \partial f(x)\). Then,
 if we take \(y = x + g\)
 \[
 f(y) = f(x) + g^T (y - x) \\
 \geq f(x) + \|g\|^2.
 \]
\end{itemize}
\[f(x) + M g \leq 0. \]

Thus, \(f(y) - f(x) = M \| g \| = M \| y - x \| \).

Exercise: Prove that the opposite implication in the previous lemma also holds.

Theorem: Assume that \(f: \mathbb{R}^d \to \mathbb{R} \) is an \(M \)-Lipschitz function, and suppose \(x^* = \text{argmin} f(x) \). Then, the iterates of subgradient descent satisfy

\[
\min_{k \leq T} \{ f(x_k) - \min f \} \leq \frac{\| x_0 - x^* \|^2 + L^2 \sum_{k=0}^{T} \alpha_k^2}{2 \sum_{k=0}^{T} \alpha_k}.
\]

In particular, if \(\sum_{k=0}^{\infty} \alpha_k^2 < \infty \) and \(\sum_{k=0}^{\infty} \alpha_k = \infty \), then

\[
\lim_{T \to \infty} \min_{k \leq T} \{ f(x_k) - \min f \} = 0.
\]

Proof: For any \(k \) we have

\[
2 \alpha_k (f(x_k) - f(x^*)) \leq \| x_k - x^* \|^2 - \| x_{k+1} - x^* \|^2 + \alpha_k^2 \| g_k \|^2.
\]
Summing up for \(k \leq T \)
\[
2 \sum \alpha_k (f(x_k) - f(x^*)) \leq \|x_0 - x^*\|^2 + L^2 \sum \alpha_k^2
\]
lower bounding by \(\min_{k \leq T} (f(x_k) - f(x^*)) \), yields
\[
\min_{k \leq T} f(x_k) - f(x^*) \leq \frac{\|x_0 - x^*\|^2 + L^2 \sum \alpha_k^2}{2 \sum \alpha_k^2}
\]
Taking limits on both sides gives
\[
\lim_{T \to \infty} \min_{k \leq T} f(x_k) - f(x^*) \leq \frac{\|x_0 - x^*\|^2 + L^2 \sum \alpha_k^2}{2 \sum \alpha_k^2}
\]
when \(\sum \alpha_k = \infty \) and \(\sum \alpha_k^2 < \infty \), the right hand side goes to zero \(\square \)

Corollary: If we set \(\alpha_k = \alpha \), then
\[
\min_{k \leq T} \{ f(x_k) - \min f \} \leq \frac{\|x_0 - x^*\|^2 + M^2 \alpha}{2 \alpha T}.
\]
If we set $\alpha = \frac{\varepsilon}{M^2}$ and $T = \frac{M^2 \|x_0 - x^*\|^2}{\varepsilon^2}$, then

$$\min \{ f(x_k) - \min f \} \leq \varepsilon.$$

Proof: First inequality follows trivially from the Theorem. Then

$$\frac{\|x_0 - x^*\|^2}{2 \alpha T} + \frac{M^2 \alpha}{2} = \frac{\|x_0 - x^*\|^2}{2 \varepsilon T} \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus we need $T = \Omega \left(\frac{1}{\varepsilon^2} \right)$ for an ε-min. With GD we needed $T = \Omega \left(\frac{1}{\varepsilon^2} \right)$ and with AGD we needed $T = (\frac{1}{\varepsilon^2})$.

Theorem There exists a convex M-Lipschitz function $f: \mathbb{R}^d \to \mathbb{R}$ and a subgradient oracle $g(x) \in \partial f(x)$ s.t. any algorithm s.t.

$$x_{k+1} \in x_0 + \text{span}\{ g(x_0), \ldots, g(x_k) \}$$

satisfies that for $k < d$
\[f(x_n) - \min f \geq \frac{M \| x_0 - x^* \|}{2(2 + \sqrt{k+1})}. \]

You can find the proof in Nesterov\'s Book (Theorem 3.2.1)

Extensions

There are results for
- strongly convex functions \(O\left(\frac{1}{\epsilon}\right) \)
- weakly convex functions \(O\left(\frac{1}{\epsilon^2}\right) \).