
Lecture 13

HW3 due Thursday
Midterm posted on Friday Morning
scribe for Today?

Last time Today
D Guarantees for strongly I D Black-box convex optimization
convex

> Accelerated Forward
$ Things that break

backward Method
.

D Analysis
D More proximal methods
1 Alternating Projections
Black-box convex optimization
What happens when we cannot solve for the

prox? we are

Now we only assume that I given a problem

min f(x)
? convex f : R

*
-IR

XIRd

and that we can query for any x

f(x) and g(x=cf(x) .
We already saw a problem like this



in HW3 :

min & max 40 , 1-y :xiw + 1 pull"W

where computing a subgradient was

easy , but solving the prox was

hard
.

A natural idea is to generalize GD

Xxxz YK- XnG(X <) .

Things that break
Smooth optimization land was rather
mix2 e In nonsmooth optimization
we cannot have :

Guarantees with constant stepsize
Why? f(x) = IN Xo

= 2 .
54

e Fixed

I &

Step size

-
E-m>
X
3

↑2 X1 Xo



No guarantee of descent
Why ? f(X ,, x2) = 3 N :1 +IXe)

No descent with x
= 15)

regardless ofG 1 2f(0 ,1) = 38(1x1))(0, 1)
↳ - 13 ,H - 1

*- + 2(Xe)) (0,1)*Y3 =

(327 - 13)
~

--1 => (3 , 1) t2f(0 , 1)
(x1f(x) -f(X0)]

Two perspectives on subgradients
Sideview

#
f(81cx)+

2g(x), e

We can also use this perspective to

derive

text= argain G 1(xn)+ (gex,) , x-x )

+Ex-x



Contour 1 Overhead

N -- ///xI?-·x............/ "! ! 2 & gT(y -x)
= 0* - -

·
X
*

gT(y - x)? - E

- /
If not e-optimal
at x

,
then optimal is here .

If f(x)-min 1 & 2 => f(x)-5>min1

If X is such gicy-x) I -E =>

f(x) = f(x) - > mint ..

Lemma Assume that I : Rd-IR is convex

e a minimum at X Then theachivingiterates of subgradient descent satisfy .

11 Yk+1
-
**1 14x-x

* 1-2x
,
(f(x,) - f(x)) exg .

Proof : By definition-

IX - x* 112 = IXx-ARGn- x
* I



= 1xx - x
*P-2xx (gx , x- x)
+ x, G , 112

Atlas - IX x -x*
2 -2x

,
(f(xx) - f(xx))

+ Xi 1912.
I

Intuition

We will get closer to the solution

if

- 2x
,
1f(x ,1 - f(x)) +x lg <0 .

A
We can achine
that if Agull is bounded

.

-
Lemma . It altycRa

, ischte
, then

IgI12 = M .

Proof : seeking contradiction assume

Ig liz = M for some go 2f(X) . Then ,

if we take y
= x + g

f(y) = f(x) + gY(y - x)
= f(x) + 19112



I f(x) + Ig1M .

Thus
, 1(4)-f() = MigH= My-XII .

o II
Exercise : Prove that the opposite implication-

in the previous lemma also holds
.

The rem : Assume that filR
"
->IR is an

M-Lipschitz function , and suppose x
*earyminfle.

Then
,
the iterates of subgradient descent

satisfy

Min [f(x) -minf] =
No -

xspetIn a---
K=0

In particular, if Ex * and =Y
,

then

lim min Gf(X,)-minfy = 0 .

-D K = T

Proof : For any we have
-

#

inst Lemma
↓

2 &
m (f(x) - f(x))= 11Xx - x

*

112-11XK+
,

-x*

- X I Gill



second
↓
Lemma

=IX - *** - 1x - x*

+ 2 X

Sumning up for K=7

222(f(x ,) - f(x4) = No- x
*+ 12 x

↑
Lower bounding by m* (8(xr)-1Cxx1),
yields
min ·f(x ,)-f(xx)_ + Ex

.k = T

2 xi

Taking limits on both sides gives

lim min fex,) -fex) = IX-x * I + Ex
---T-A K = T E

2[x

when Ex = D and Ix<
,
the

right hand side goes to zero I

Collary : If we set
i
= ↑ then

S

me [f(x ,)-mingl I nxo- X
* 12 t M2g
- --

2x T 2



If we set x = E/M2 and T IM,

E2
then

min 98(x2) -minfy= E
.

Proof : First inequality follows trivially
-

from the Theorem
.

Then

&

11 Xo-x
* 112

n2 x Yell " a- + --
2x T 2

I

↓
↳ I = E .

I

Thus we need T = -(e) for an E-min
.

With GD we needed + = -Lla)
and with AGD we needed T =(i) :
Theorem There exists a convex M-Lipschitz
function f : R*- RR and a subgradient orache
gex = efex S

.t . any algorithm s .
t

Xr+1 & xo+ span [q(Xo) , ..., g(Xxly
satisfies that for <d



f(Y) -ming?
You can find the proof in Mesterov's
Book (Theorem 3

.2 :1)

Extensions

There are results for
- strongly convey functions olt
- weakly convex functions 0 (a) -


