Lecture 12

Last time

- Forward - Backward method
- Examples
- Constraints via proximal operator
- Analysis

Today

- Finish analysis
- Guarantees for strongly convex
- Accelerated Forward Backward Method.
- More proximal methods
- Alternating Projections

Theorem

For any convex, L-smooth f and convex h such that $x^* \in \text{argmin} (f+h)(x)$.

Then, the iterates of FBM with $\alpha_k = \frac{1}{k}$ satisfies

\[
(f+h)(x_{k+1}) - \min (f+h) \leq \frac{L \|x_0 - x^*\|^2}{2k}.
\]

Proof: We start by proving

\[
0 \leq (f+h)(x_{k+1}) - \min (f+h) \leq \frac{1}{2} \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2 \right)
\]

By definition x_{k+1} minimizes

\[
\varphi_k(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + h(x) + \frac{1}{2} \|x - x_k\|^2
\]

By $\text{HW2} \ p2$:

\[
\Phi_k(x_{k+1}) + \frac{1}{2} \|x^* - x_{k+1}\|^2 \leq \Phi_k(x^*)
\]
Using the characterization of L-smooth convex functions

\[(2) \quad (f + h)(x_{k+1}) \leq \Psi_k(x_{k+1})\]

Using the convexity of

\[(3) \quad \Psi_k(x^*) \leq f(x^*) + h(x^*) + \frac{L}{2} \|x^* - x_k\|^2 \]

Then

\[(f + h)(x_{k+1}) - \min (f + h) \leq \Psi_k(x_{k+1}) - \min (f + h) \]

\[(3) \quad \Psi_k(x^*) - \frac{L}{2} \|x^* - x_k\|^2 - \min (f + h) \leq \frac{L}{2} (\|x^* - x_k\|^2 - \|x^* - x_{k+1}\|^2),\]

which establishes \((\times)\).

\[\square\]

Again convergence should speed up under quadratic growth.

Theorem If in addition, we suppose that \(f + h\) is \(\mu\) strongly convex. Then

\[(f + h)(x_{k+1}) - \min (f + h) \leq \frac{1}{2} ((f + h)(x_0) - \min f + h)\]

for \(k \geq \lceil 2L/\mu \rceil\).
Proof: By the previous theorem
\[
(f + h)(x_{k+1}) - \min f + h \leq \frac{L}{2K} \|x_0 - x^*\|^2
\]

Thus we achieve accuracy \(\varepsilon\) after
\[
\log_2 \left(\frac{(f + h)(x_0) - \min f + h}{\varepsilon} \right)
\]
iterations.

Acceleration

We consider the algorithm that starts at \(y_0 = x_0\) and \(\lambda_0 = 0\), and updates
\[
y_{k+1} = \text{prox}_{\alpha h} (x_k - \alpha \nabla f(x_k))
\]
\[
x_{k+1} = y_{k+1} + \left(\frac{\lambda_k - 1}{\lambda_k K_{k+1}} \right) (y_{k+1} - y_k)
\]
\[
\lambda_{k+1} = 1 + \sqrt{1 + 4\lambda_k^2}
\]
This algorithm goes by different names:

- Accelerated/Fast proximal/Projected Gradient Method
- FISTA.

Just as before, it exhibits faster convergence.

Theorem: For any convex f with L-Lipschitz gradient and convex h, the iterates of AFBM with $\alpha = \frac{1}{2}$ satisfy

$$(f + h)(y_k) - \min f + h \leq \frac{2L \|x_0 - x^*\|^2}{(k+1)^2}.$$

Proof: Details are very similar to the proof for AGD (see Beck’s book Theorem 10.34).

More proximal methods

A natural question is what happens when we have

$$\min f(x) + g(x).$$
If \(f, g : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\} \), and none of the two is smooth. Maybe the proximal operator of both \(f \) and \(g \) is easy to compute.

Examples

- **Intersection of two sets**

 Find \(x \in C_1 \cap C_2 \) where \(C_1, C_2 \) are convex and closed.

 Then the two prox are projection.

- **Compressed sensing**

 \[
 \min \|x\|_1 \quad \text{s.t.} \quad Ax = b,
 \]

 \[
 \min \|x\|_1 \quad \text{\textcolor{red}{\textbf{\textit{Proj is easy}}}}
 \]

 There are a number of methods to tackle these problems:
 - **Alternating Projections** (Example 1)
 - **Alternating Direction Method of Multipliers (ADMM)**
 - **Primal - Dual Hybrid Gradient (PDHG)** (Example 2)

 In order to understand the ideas behind
ADMM and PDLP we need more convex analysis, so these algorithms will be covered in Nonlinear 2.

Alternating Projections

Assume we want to solve

\[\min \|x - y\| \text{ st. } x \in \mathcal{C}_1, \ y \in \mathcal{C}_2. \]

The alternating projections method was originally proposed by John von Neumann. It updates as follows

\[x_{k+1} = P_{\mathcal{C}_1} P_{\mathcal{C}_2}(x_k) \]

Intuition

[Diagram of sets \(\mathcal{C}, \mathcal{C}_1, \mathcal{C}_2 \) with alternating projections.]

Another perspective to analyze iterated algorithms based on proximal mappings is through the lens of a fixed-point iteration.
Def: Given an operator $F : \mathbb{R}^d \rightarrow \mathbb{R}^d$, a fixed-point iteration updates

$$x_{k+1} < F(x_k).$$

The goal of this iteration is to find a fixed point $x^* = F(x^*)$.

Proposition: The following two are equivalent

- x^* is a fixed point of $P_{c_1} P_{c_2}$.
- $(x^*, P_{c_1} x^*)$ is a solution of

$$\min_{x \in c_2} \frac{1}{2} \| x - y \|^2,
\quad \min_{y \in c_1} \{ \| x - y \|^2 + \tau_{c_1}(x) + \tau_{c_2}(y) \}$$

Proof: Consider

$$f(x, y) = \frac{1}{2} \| x - y \|^2 + \tau_{c_1}(x) + \tau_{c_2}(y)$$

Then (x^*, y^*) is a solution if

$$[0] \in \left[x^* - y^* \right] + \left[\partial \tau_{c_1}(x^*) \right]$$

Thus

$$y^* - x^* \in \partial \tau_{c_1}(x^*) \Leftrightarrow \text{proj}_{c_1}(y^*) = x^*$$
$$x^* - y^* \in \partial \tau_{c_2}(y^*) \Leftrightarrow \text{proj}_{c_2}(x^*) = y^*$$
Fact 1: $R = 2F - I$ is 1-Lipschitz.

Check!

Fact 2: For all $a, b \in \mathbb{R}^d$

$$\|\frac{1}{2}a + \frac{1}{2}b\|^2 = \frac{1}{2}\|a\|^2 + \frac{1}{2}\|b\|^2 - \frac{1}{4}\|a - b\|^2$$

Theorem: The iterates of AP satisfy

$$\frac{1}{T} \sum_{k=0}^{T-1} \| x_k - F(x_k) \|^2 \leq \frac{\| x_0 - x^* \|^2}{T}$$

Proof: Rewrite $F = \frac{R}{2} + \frac{I}{2}$, then

$$\| x_k - x^* \|^2 = \| \frac{1}{2} (x_k - x^*) + \frac{1}{2} (R(x_k) - R(x^*)) \|^2$$

\[= \frac{1}{2} \| x_k - x^* \|^2 + \frac{1}{2} \| R(x_k) - R(x^*) \|^2 - \frac{1}{4} \| x_k - x^* - \frac{R(x_k) - R(x^*)}{\| x_k - x^* \|^2} \|^2 \]

\[\leq \| x_k - x^* \|^2 - \frac{1}{4} \| x_k - R(x_k) \|^2. \]

Reordering and summing up first $T - 1$ ineq

$$\frac{1}{4T} \sum_{k=0}^{T-1} \| x_k - R(x_k) \|^2 \leq \frac{1}{T} \left(\| x_0 - x^* \|^2 - \| x_T - x^* \|^2 \right)$$

$$\| 2(x_k - F(x_k)) \|^2 \leq \frac{1}{T} \| x_0 - x^* \|^2$$
Corollary: The iterates converge to a fixed point x^*.

Proof: Let $S = \{ x | F(x) = x \}$. By the previous Theorem, the x_k's are bounded. Thus, there is some accumulation point x^*. By the previous Theorem $\| x_k - F(x_k) \| \to 0$, by continuity $x^* = F(x^*)$. Moreover by (\ast) $x_k \to x^*$.

More generally one can prove that the convergence depends on transversality.

θ - angle between sets.

Slow convergence due to lack of transversality.