
Lecture 10 (Sep/28)

Scribe ? HW due tomorrow .

Last time Today
* Classroom Chaos I 1 Review of smooth optimizationD Proof lower bound Motivating Problems

$ Proximal Operator

Summary of guarantees
for smooth optimazation .

Method Generic rate Quadratic
1-smooth) growth

Gradient Descent I 107(x11= ⑦(E) f(x+) - f(x*)=0(11 -x))
(for noncourex f) k=0 (Local rate for V f(x* ) >0)

Gradient Descent
f(x+) - min 8 = & (1) f(x) - minf = O(A)

(for convex f)
8 M-strongly convex)

Accelerated Gradient
flyT) -min = &(1) f(x-1-minf =8 (* )*2

(for convex 8)
X Mm-strongly convex

Optimal HW2P32 ~i-

(Also optimal)



What's next ? Structured nonsmooth optimization
1 . Motivating problems
2 . The proximal operator
3 . Proximal gradient method
4 . Constraints and projections
5 . Acceleration tions

6 . More proximal methods .

Motivating problems
Several optimization problems are non-smooth

.

One common way in which nonsmoothness arise

is by promoting structure .-

Sparsity
Imagine we wished to solve a linear system

AX=b
,

This could be solved using least-squares
min=HAX-bII?

which works well when A = /] ; more constraints

than variables
. But often in science we have

-

more variables than constraints A =2 . Thus
,
we



same motiple solutions . Which one to pick?

· This a common problem stats (Regression) .
A common approach is to pick one

-

with few nonzero entries
.

Good for interpretability

This motivated Rob Tibshirani to propose LASSO

min =AX-bl+ 11IXI1 * Promotes
↑ sparsity
Nonsmooth

· This is also a common problem in signal
processing (inverse problems) When you are

trying to recover a sparse signal .
Donoho (2004)

,
candes

, Romberg ,
Two (2004)

proposed compressed sensing
min IXI11 st . Ax = b

.

X IRd

Intrition

x
x11x = by

The point-

of intersection ↑Hiis sparse -
/x1IX1= 23



Low-Rankness

Sometimes researchers are interested in

did

recovering a matrix Xe IR 2 satisfying
a linear system

A(X)= b

Linear map 1 : Adde ->A"
but diedem Cless constraints than variables)

.

Examples arise in

· signal processing
The seminal problem of phase retrieval
aims to recover a rank 1 matrix X

.

other examples include blind deconvolution
.

· Recommendation systems

The matrix completion

as movies) problem aims to recover

1 1
a matrix X from

I 2 5 entries (a linear map) .
E

X is assumed to be low-rank (similar people
like similar movies)

.



To solve this problems Fazel (2002)

proposed to solve

min = A(X) -ble X 11Xle
x

nuclear norm

IIXI =
*
0
: (X) .

A class of problems
These examples have the form

min

X= IRd f(x) + h(x) .↑
smooth convex (andweeposable)

In the next few lectres we will study
how to solve optimization problems of this

form ,
Proximal operator
How do we come up

with algorithms?
Approximations !
We saw before Hat gradient descent
can be written as

Xe+1 = argmin ( f(xt)+Yf(x-P(x - xt)
+

a
11X-X1143 :



This strategy goes well beyond GD. Given

a function i connex function I : 1R
"
-> RRU40]

.

closed

We define the proximal operator
proxy (x) = argmin [4(z) +1 11 z - xY .

X
z 2x

Lemma : The proxor : IR
* ->IR" is well-defined .

Proof
-

: The function = + 2(z) +
a

11 .z-XI2

is strongly connex . By HW2 it has a unique
minimizer. I

Lemma : Let 1 :RRd+RuGyY be a closed
-

comex function and 1 : IRd-R be a

smooth function . Let x* = argmin fex)+I(x) ,

then
- - f(x*) - 2 I(X9 .

Proof : Let XERRY and It CO
,
1]

Xt

-) f(x) + Y(x*) ! f((x-x*)) + Y(y * + =(x -x4))
↑

< f!x) + (1 - t)Y(xx) + + Y(x)

=> f(x) - f(x) = +(Y(x) - Y(x4)) (=)



By definition of the gradient :
; - Pf(x* ) , X - xP) = lim f(x*) - f(X + t(x - xP))

I

t↓O-

t
(i)
E I(X) - N(x *)

.

=>- 0 f(x * ) - 2 I(X *) .
I

Lemma : Let r :RdRuGyY be a closed
-

comex function and 1 : 1Rd-> IR be a convex

smooth function . Then

x
*

Gargmin v() + fex) => -Vf(X*)e 24(x*)
.

Proof : "U
-

C ↳ For
any XGIRd

f(x
*
) + ex*) = f(x)+ (8f(x) , x

*
-x)

+ q(x) - 14f(x) , X
*
-X)

If(X) + Y(X) .

lif

Proposition 9 : The point xt = proxap(x) if-

(X - x
+

1 = bi(x 1 .



Proof · Follows directly from the previous-

Lemma . I

The update Xm * ProXxy (4) is usually
called an implicit (or backward) step
because

-
- Gxe24(X, 1) .

xx + 1
= X
,
- x Gx

That is like gradient descent with the
gradient evaluated at the future iterate vi
The proximal operator gives a natural
templates to design algorithms :

Loop K20 :

Define approximation In of I near Xk
Update N + 1 * proXa (Xr) .

Tw examples :
Gradient descent
i , (X) = f(xx) + [Vf(Xx) , x -xx)

Proximal point method
Each iteration might

Y
,
(x) = f(x) << be just as hard as original

problem.



Forward-Backward Method
.

When we have a sum

X
f + ↳ we have

smooth convex

a natural approximation
I , (x) = f(x

*) + (0f(xx)
,
X - x
*

) + h(x)
- ↑

linear approximation perfect
approx .

Then
,
at each iteration we update

Xies * argmin [h(x) + f(xx)+ 20 f(xn), x -x)
X

onnet +

1 1x-xll Z- !W

-Part
2xk

By Lemme D smooth

- n8f(Xn) - X -x) = 2h(x)

By Proposition &
,
this is equivalent to

Xk+1 = ProX Nich (xx - xx f(x ,)) .
ee

Backward step Forward Step

Thus
,
this method works well for


