
AMS 761 Nonlinear Optimization I FALL 2023

Lecture 1: August 29
Lecturer: Mateo Dı́az Scribe: Ian McPherson

1.1 Syllabus

Instructor: Mateo Dı́az, Office Hours: Monday 4:00 - 6:00pm.

TAs: All office hours are in Wyman S425

• Kaleigh Rudge, Office Hours: Wednesday 10:00 - 11:20 am;

• Thabo Samakhona, Office Hours: Thursday 10:00-11:20 am;

• Roy Siegelman, Office Hours: Wednesday 7:00-8:20 pm

Resources: Check Canvas, Website, https://mateodd25.github.io/nonlinear/, Piazza for general questions.

Grading Breakdown: Four components

1. Homework: Approximately a total of 5, with one every two weeks - proof-based + coding (Python by
social pressure);

2. Midterm: Take home (October 13th - 17th);

3. Final: Take home (December 13th - 15th, subject to change);

4. Participation

Now, the grade is computed where H,M,F are variable weights for the grades given the breakdown above,
CH , CM , CF , CP respectively:

maxCHH + CMM + CFF + CP (100−H −M − F )

subject to



(H,M,F ) ∈ R3

H +M + F ≤ 100

15 ≤ H,M

M ≤ F

50 ≤ M + F ≤ 80

90 ≤ H +M + F
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1.2 Motivation

Before beginning, if the following motivations do not interest you, solving the grading rubric for your final
grade might.

We are interested in solving problems of the following form:

min
x∈C

f(x).

We focus on when C = Rd, that is unconstrained optimization problems. Here are some relevant examples.

Example 1.1. Predicting Movement of a Planet

In 1801, Giuseppe Piazzi discovered a planetoid, a small planet orbiting in a different solar system, named
Ceres. He published 22 measurements of Ceres at different snapshots in time, namely of the form {(xi, yi)}22i=1.

Euler made the assumption that the planet revolves on an ellipse. This assumption constrained what kind
of trajectories would work. This looks as follows:

Mathematically, we may express such orbits in a functional form, as an equation with three coefficients:

αx2 + βy2 + γxy = 1.

He tried to fit the data via optimization. Then,

min
α,β,γ

22∑
i=1

(αx2
i + βy2i + γxiyi − 1)2.

By minimizing the L2 error, we are finding the projection onto the space of ellipses that produces the ellipse
that corresponds with the given data. This is an instance of Least-Squares.

Definition 1.2. Least Squares Problem

The least squares problem in this context is given as

min
w∈Rd

∥∥Aw − b
∥∥
2
,

where A ∈ Rn×d and b ∈ Rn are both known.
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Example 1.3. Planet Movement, Continued

In the example, we would have that

ai =

 x2
i

y2i
xiyi

 , w =
[
α, β, γ

]
, bi = 1,

where a⊤i would be the rows of the matrix A ∈ Rn×d, where n = 22 the sample size.

Euler’s method was arguably one of the first examples of data fitting. Next, we will see a modern example
that is similar in spirit.

Example 1.4. Learning

Consider having inputs {(xi, yi)}ni=1, with the following goal.

Goal: Find a function f such that f(xi) ≈ yi.

An approach is to parameterize a family of functions,

Fθ := {fθ|θ is some parameter}.

Then, given this set we want to solve the following optimization problem

min
f∈F

n∑
i=1

ℓ(f(xi, yi)),

where ℓ is a loss function that measures the disagreements between the output of our learned function and
the data.

Let’s apply this framework to another example, learning a function that predicts whether or not you have
COVID.

Example 1.5. Logistic Regression - Covid Example

Consider storing the quantitative descriptions of a patient xi as a vector, where the predictors are like age,
temperature, blood pressure, heart rate, etc. Consider yi ∈ {0, 1}, corresponding with if you do or do not
have covid. Since we have a binary output, this classification problem is called logistic regression.

The idea is simple, in this high-dimensional feature space, we should be able to separate the two classes of
individuals by a hyperplane, where the weight vector w will give us the normal vector of the hyperplane.
More concretely, we can do the assignments by consider the inner product with the normal vector, which
geometrically corresponds with how much you are one side of the hyperplane{

⟨xi, w⟩ > 0, you’re sick;

⟨xi, w⟩ < 0, you’re healthy.

Of course, the closer you are to 0, the closer you are to the hyperplane. Intuitively, we have the following
image:
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To construct, we consider the following family of functions:

fw(x) =
1

1 + exp(−xTw)
,

which mimics an assignment of probabilities of having COVID. Thus, we can simply state the problem as

min
w∈Rd

n∑
i=1

l(fw(xi, yi) = min
w∈Rd

−
( ∑

yi=1

yi ln(fw(xi) +
∑
yi=0

(1− yi) ln(1− fw(xi))

)
.

Note, that this is just the usual MLE formulation, this makes sense in this context.

For a last example, we highlight a much more complicated optimization problem: Neural Networks.

Example 1.6. Neural Networks

We can think of fw(x), where the weights correspond with different matrices. This can be codified as a
massive composition

WL ◦ σL−1 ◦WL−1 ◦ · · · ◦ σ1 ◦W1x,

where σi are nonlinear functions and Wi are matrices. For instance, one might just use the RELU function
for σi.

This is non-smooth, and non-convex! That’s HARD.

The point of this class is that given these optimization problems, without having to think about the con-
struction of the problem, how can we solve the problems efficiently and accurately?
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1.3 Overview

The layout of the course is as follows:

1. Geometry: This will be focused on optimality conditions and basic convex analysis;

2. First-order methods: These methods only use gradient information, that is only can call x 7→ ∇f(x).
The types of functions we consider are of following regimes:

• Smooth Functions - we have access to derivatives;

• Convex Functions - in this regime local guarantees becomes global;

• Non-smooth Functions - we will have to use tangent cones and such;

• Stochastic Functions - these functions are of the from

f(x) = EzF (x, z).

This is especially important in data science where we only have access to the samples of the
distribution, not the distribution itself.

3. Second-order methods: These methods also use Hessian information, that is we get x 7→ (∇f(x),∇2f(x)).
This will highlight the tension between convergence rate and computation cost. These regimes are of
the flavor of:

• Newton’s Method;

• Quasi-Newton’s Method;

• Trust Reason Methods

4. (Time Permitting): Linear Programming, Conjugate Gradient Method, Composite Optimization.
We will most likely only have enough time to cover one of the three problems.


