
Lecture 6

Last time

I TodayD Johnson-Linderstrass -) Police norms cont
.

Lemma. DMcDiarmid's Ineq.
① Oulicz norms

Orlicz norms
We finished with :

Proposition : Let X be a r . r . the
-

following are equivalent (modulo const.
(factors :

1) 7k, 0 s .
t . P(1X1t) < 2e-t/k , VEzo.

2) JKz20 st . Nep=(E)"SK2 p Xpzt .

3) zky30 s .
t

. EexpliX) = 2 .

Moreover, if EX =0 then, these are

guivalent to

4)5ky>0 St. Exp(X)=exp(k)in
t

This motivates the following.
Def : The sub exponential norm of a
r.V. is

1IXIIv:= inf <120:exp(/1)<2] .

t



just as before Illy ,
is a norm over

the set of subexponentials. Moreover

1IX-EXlly , = CX1y
We motivated subexponential via X

?

distributions
,
in turn products of sub-

Gaussians are always subexponential.
Lemma : Suppose X

, Y are sub-Gaussian,
then

/Xylly, = Mllvellyly +

Proof : WLOG IXIIn = 1Y/v =1
.
Then

-

#exp(Ixy) = # exp(X + Y()
↑

Young's ineg . lablaze + b 21

↓ - I exp(**) exp(y(2)
[E(Eexp(x2) + Eexp(y)))
-(2 + 2) =2. I

It is natural to wonder whether
other functions besides exponentials de
fire other norms capturing different
growth/tails . Indeed

, this is the case



-

Def : Given a convex , rondecreasing function
-

t-X

Y : /R+ - IR s .t. Y(0) = 0 with Y(t)-*,
t

define the Orlicz norm of a rv. X
as

IXIIv = inf[k>01Eu(M) = 19. +
One can show that this defines a room
on 2X1M1v*Y.
Example : For YIE) = HP with p21 de--

fires Lp . While Yet-1 and Y
,
Ct)

t
I e -I define sub-Gaussians and

sub exponentials, respectively. t

Concentration of functions of iid r . V.
So for we have studied concentration
of sums .

However
,
this is a more

general phenomenon. The following
principle it's good to have in mind

If X, . . ., An are independent
V-V. then f(X, ..., And concen-



trates near Effy , ..., Xn) provided
f is not to sensitive to any
wordinate.
We will instantiate this principles
for two notions of "sensitivity.
Our goal is to prove the following.
Theorem (McDiarmid) : Let Xis ..; Xn
being . r

. Us and f : /" -> IR be a fun?
tion s .

t. Fjecn] J(jo with

If /z, ,
. .

., zj , . .

., En)-f(z , ..., Ej , ..., En)/ = Cj
* z,Z , ...,

En, jER - Then,
- 264ICI

P(1f(x) - Ef(x)kt) < 2e ·

f
To prove this result we willwe
the so-called Martingale method,
which is useful beyond this proof.

Def (Martingale) : We say that a-

sequence of U. V. Yo , Y, ... is a r.
V.

with
·

respect to another sequence of or



Yo , Xo ... IfIn we have
· Elyn! D v Yn

= f(Xo , ..., Xn)
·Yn is measurable writ . Yo

, .... Yn)
· E) Yn+ / Xo, . . ., Xn) = Yn +

Martingales model fair games. They are
helpful to derive results when foll inde
cendence fails (CLTs ,

concentration).
They are covered in Prob

. Theory I.
We will need to remember a few facts.

Fact (Tower law) : If j < K

ECE(Y1 X , . . .

, Yn] /X , , . .

.,Xj] = ELY /X 1 , . .

.,Xj] .

Fact : If Y is measurable w . r .

t
. Y.. . . ., Yo ,

#[Y(X1:Xn] = Y .

The idea for the proof is to consider
Yo : Ef(x) and Yj = #(f(x) /X , ,

. .

,%]· Eg
Then

, we can decompose
f(x) - Ef(x) : Yn - %=Mix - Yj) . (5)

jo
It is not hard to see that <Ym]



is a Martingale with respect to GXkY :

If[Y ( X , ,
. .

.,Xj]: <[F(X) (X1 .
. . .

, Xje] /Y, . .

.,]
Tower law- = ECf(x) IX , .

. . .

,Xj] (b)
= Yj .

Thus
,
in order to control the difference

If(X) - 1EfI)) it suffices to control
soms of Martingale differences.

Lemma (Azuma) : Suppose that syng is
a Martingale w . r .

t. YXb and set
1x = Yk-Yu · Further, assume K

2012#Let X
.

.
. .

, Xi] = e a .S
.
(8)

Then , the som &Ar is 16112-Sub-Gaussian
.

k=1 ↑

We will come back to the proof of
this result next time.


