Lecture 5

Last time

- P Degree of random P graphs. D Subexponentials
- b Bernstein's Inequality

Today

- D Johnson-Lindeustrass Lemma.
- o Orlicz norms

Dimension Reduction

Suppose we have a set of points 1x1,..., xm sciRd and we wanted to "compress" them by mapping them to IR" with n<d, white approximately maintaining their ageometry", i.e., we want fixually sit. Vx, yex.

(1-E) 1x-y1/2 11f(x)-f(y)1/2 = (1+E) 11x-y1/2 (=)

How small can n be?

Theorem (Johnson-Lindevstrauss)

Fix 6,86(0,1) a let XERA be a set with n points. Take

and draw a matrix MER^{n×d} with ird N(0,1) entries. Then, with probability at least 1-5, the map

$$f(x) = \frac{1}{10} Mx$$

satisfies (:) for all x,y & X -1

Remark:

- 1) The embedding dimension depends on m, but not d. CRAZY!
- 2) This is an example of the probabilistic method.
- 3) This result is oblivious to the dola.
- 4) what can you do when X is not finite? We'll come back to this question.

Proof: Given any
$$z = x - y$$
, we have
$$\frac{\|Mz\|^2}{\|z\|^2} = \sum_{i=1}^{2} \langle M^i, \frac{z}{|z|} \rangle^2 \sim N(0,1) \quad (why?)$$

By the Sum Rule from Lecture 3

11 MZ12 is (277, 4)-subexporential.

112112

Thus, applying Bernstein's Ineq.

$$P\left(\left|\frac{\|Mz\|^{2}}{\|n\|z\|^{2}}-1\right| \geq E\right) \leq 2 \exp\left[-\left(\frac{nE^{2}}{8}\right) \frac{ne}{8}\right]$$

$$= 2 \exp\left(-nE^{2}/8\right).$$

$$\|x-y\|^{2}$$

This implies that for fixed $x, y \in X$ $P((xt)) \text{ does not hold for } x,y) \leq 2e^{-n\varepsilon^2/8}$ Taking union bound over the $\binom{m}{2}$ pairs of points yields

$$P(x)$$
 holds for all $x,y\in X$) $\geq 1-2(\frac{m}{2})e^{-\frac{n\xi}{8}}$
 $\geq 1-m^2e^{-\frac{n\xi^2}{8}}$
 $= 8.$

Sub-Gaussian Norm We gave one definition of

sub-Gaussians. Yet there many. Proposition: Let X be a r.v. the following are equivalent (modulo const. factors: 1) 3K,>0 s.t. P(|x|>t) \(2e^{-b^2/k_1}\) \(\forall \) \(\forall 20. 2)] Kz>0 s.t. ||X||z=(E|X|P) 1/p = K2TP Yp=1. 3) 3 K3 >0 s.t. E exp (x2/k2) = 2. Moreover, of EX=0 fren, these are guivalent to 4) 3K4>0 st. Eexp(XX) = exp(K2)2) + ler Proof: We prove $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$. 1) => 2) WLOG K_ = 1 (Why?). By HW1 EIXIP = Sopt P(|X| 2 t) dt 4 p J. 2 t -1 e-t dt t=5 = p 5 sp-1 e-s ds Gramma function 1(1/2) = P (P/2) 3 p (p/z) P/2

$$||X||_{L_{p}} \leq (3p)^{1/p} (1/2)^{1/2} \leq e^{(3/e)} ||p||$$

$$||E||_{L_{p}} \leq (3p)^{1/p} (1/2)^{1/p} \leq 1 + \sum_{p=1}^{\infty} \frac{\lambda^{2p} ||E||_{L_{p}}}{p!}$$

$$||E||_{L_{p}} \leq 1 + \sum_{p=1}^{\infty} \frac{\lambda^{2$$

Del: The sub-Gaussian norm of a r.v. is

IXIV2:= inf & K>0: [Eexp(X²/k²) ≤ 24.

Lemma LHW): 11. 11/2 13 a norm on 1 X 1 1 X U 1/2 < 50 4. We can restate the theffding's meg. Theorem (Hoeffding via 11.11/2): Let X1,..., Xn independent r.v. and sub-Gaussian. Then, universal. 1 = Xilly = C = 1Xilly. Notice that IIXIIVE does not require us to recenter X. In particular, we have Lemma: || X - EXII & C || X || 2. Proof: Apply trrangle ineq. 11 X - EXIV = 11 X11 /2 + 11 EXIV. To bound the second term ;)

IEXIV = IEXIIIIIV < CE IXI < C' IIXIV. Jensen's Different const. 4 There is an analogous story for

sub exponentials. Proposition: Let X be a r.v. He following are equivalent (modulo const. factors): 1) 3K,>0 s.t. P(|x|>t) =2e-t/k, 4630. 2)] Kz>0 s.t. ||X||z;=(E|X|P) /p < Kz p \p = 1. 3) 3 K3 >0 s.t. E exp (1x) = 2. Moreover, of EX=0 fren, these are guivalent to 4)]K4>0 st. Eexp()X)=exp(K2)2) YIX1=1 This motivales the following. Del: The subexponential norm of a 11 X 11 y2:= inf & K>0: [Eexp(IXI/K) = 24. Just as before 11.114, is a norm over the set of subexponentials. Moreover

11X-EXIV, & CIXIV.

We motivated subexponential via X° distributions, in turn products of sub-Gaussians are always subexponential. Lemma: Suppose X, Y ove sub-Gaussian. 11xy11y, & 11x11y2 11 Y11y2. Proof: WLOG ||X||y2 = ||Y||y2 = 1. Then E exp(1xy) = E exp(x2+ y2) Young's ineq. labl 4 a2/2 + b2/2 $= \mathbb{E} \exp(\frac{x^2}{2}) \exp(\frac{y^2}{2})$ $\leq \frac{1}{2} \left(\mathbb{E} \exp(x^2) + \mathbb{E} \exp(y^2) \right)$

It is natural to wonder whether other functions besides exponentials de fire other norms capturing different growth/fails. Indeed, this is the case. Def: Given a convex, renderersing function $V: R_+ \to R_+$ s.t. V(0) = 0 with $V(t) \stackrel{t}{\to} \infty$, define the Orlicz norm of a r.v. X

ら 1/2 (2 + 2) = 3. 口

11X114 = inf (K>0 | E4(1x/k) = 19. 4

One can show that this defines a norm on 2×1 1×11, <05.

Example: For $\psi(t) = H^{p}$ with $p \ge 1$ defires \mathcal{L}_{p} . White $\psi_{2}(t) = e^{t^{2}} - 1$ and $\psi_{1}(t)$ = $e^{t} - 1$ define sub-Gaussians and subexponentials, respectively.