Lecture 18 Today Last time o Ordinary least D Intro to estimation & Maximum likelihood D Excess risk estimation Least Squares Suppose we wished to solve the (4) min $R_n(\theta)$ with $R_n(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^T \theta)^2$ where $\frac{\partial E}{\partial x}$ Random or $\frac{\partial E}{\partial x}$ $\frac{\partial E}{\partial x}$ yi = 0 xi + E; As we talked about last time this is known as the empirical risk and it approximates the population risk $Q(\theta) = \mathbb{E} R_{\eta}(\theta).$

we will use the following matrix notation $Rn(\theta) = \frac{1}{n} \|y - X\theta\|_{2}^{2}$

where

$$y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$
 and $x = \begin{bmatrix} -x_1 \\ \vdots \\ -x_n \end{bmatrix}$.

We will assume d≤n and x has rank d. An aptimal solution of (#) is called "ordinary least squares estimator" ocs.

Lemma: DOLS is exist and is unique. Further, it is given by

Proof: The first statement follows since Rn(.) is strongly convex. Then, using first order optima-lity yields

and so the formula for θ^{out} follows.

The OLS estimator has a nice geometric interpretation.

hemma: The predictions $XO^{OLS} = X(X^TX)^{-1}X^TY$ y onto range (x) = 1R". Thus we can see θ as solving range X θ $\hat{y} = \text{Progrange} X \hat{y}$ ② Solve XO = y. Exces risk Natural guestion: How close is R(ODLS) to min R(0)? This is called the excess risk We will study it in two situations to Fixed design: Assume that X is deterministic and we studg

Expectation ER(GOLS) - min R(G) w.r.t. E

v Random design: Assume that X is random and we take the expectation w.r.t. X as well.

We focus on the fixed design se-Hing first. Defire

Z = 1 X X

which by assumption is invertible. Any posifive definite matrix defines an inner product via

 $\langle \theta, \theta' \rangle_{\hat{Z}} = \theta^{T} \hat{Z} \theta,$

which induces a norm $\|\theta\|_{\widehat{\mathcal{Z}}}^2 := \langle \theta, \theta \rangle_{\widehat{\mathcal{Z}}} = \|\hat{\mathcal{Z}}^{1/2}\theta\|_{2}^{2} = \frac{1}{n} \|\chi\theta\|_{2}^{2}$

Let's characterize the generalization error for any BEIRd

Lemma(x): Suppose X is fixed. Then,

R(b) -
$$R^{*} = || \theta - \theta^{*} ||_{\hat{Z}}^{2}$$
 $\forall \theta \in R^{d}$
and, moreover, $R^{*} = \sigma^{2}$ +
Proof: Expanding
R(b) = $\frac{1}{n}$ $|| E || y - X\theta ||_{\hat{Z}}^{2}$
= $\frac{1}{n}$ $|| E || x (\theta^{*} - \theta) + E ||_{\hat{Z}}^{2}$
= $|| \theta^{*} - \theta ||_{\hat{Z}}^{2}$ + $\frac{1}{n}$ $|| E || E ||_{\hat{Z}}^{2}$

Twos, $R^* = R(\theta^*) = G^2$ and the result follows.

Recall from our computation last class

= 10* -0 112 + 02.

Ellô-6*1½=
$$\|E\hat{\theta}-\theta^*\|_{2}^{2}$$
 + $E\|\hat{\theta}-E\hat{\theta}\|_{2}^{2}$.

Next we study these two for the OLS estimator.

As a direct corollary of lemmas (X) and (M) we obtain a characterization of the excess risk.

Corollary: Suppose X is fixed. Then $\mathbb{E} \, \mathcal{R} \, (\theta^{\text{OLS}}) - \mathcal{R}' = \frac{d}{\infty} \, \sigma^2.$

Proof: We know that since & ous is

unbiased, the excess risk is Varz (6). Thus Var = (806) = E 11006 - 01/2 → = E tr (\$ (\$\text{\$\tex{\$\text{\$\e of the trace = tr(2 E(0013 - 01) (0013 - 01)) $= \frac{\sigma^2}{n} \operatorname{tr}(I) = \frac{d\sigma^2}{n}$ Another natural question given that we don't have access to R, how close is R, LBOLS) to R(BOLS)? Lemma: Suppose that X is fixed. Then, $E Rn(0^{OLS}) = G^2 - \frac{d}{n}\sigma^2$ Proof: Expanding En(6013) = - 1 E 11 X 602 4 112 = = = [((x(x^Tx)^T) x - I)y | 2 $= \frac{1}{2} \mathbb{E} \| (\chi(\chi_1 \chi)_1 \chi - I) (\chi \Theta_4 + \varepsilon) \|_{\mathcal{L}}^{5}$

= $\frac{\sigma^2}{n}$ tr((P-I)(P-I)^T)

Projection onto a (n-d)-dim

subspace.

$$= \frac{\sigma^2}{n} (n-d).$$