
Lecture 18
Last time Today
D Intro to estimation I D Ordinary leastD Maximum Likelihood squares

estimation
D EXcess risk

Least Squares
Suppose we wished to solve the

problem
min Ru(O) with Rult)=gi-Xie) ?(A)
OE IR

&

Random or ind
where fixed - N(0, 02)↓

Yi=↑Xi + Ei
As we talked about last time this
is known as the empirical risk and
it approximates the population risk

R(f) = ERn(E) .
We will be the following matrix motation

Ru(f) = Fly- XOII~
where



: (a) and X=
We will assume don and X has
rank d.

.
An optimal solution of

(A) is called "ordinary least squares
estimatora OOLS.

Lemma : Dos is exist and is unique.
Further

,
it is given by

gas = (XTX) "XTy .

Proof The first statement follows-
since Rn( . ) iS strongly convex.

Then, using first order optima-
City yields
0 = VRn(f) = EXT(yo -y)

and so the formula foras follows.
I

The OLS estimator has a nice
geometric interpretation.



Lemma : The predictions
-

Xoors = X(XX)"XYy
is the orthogonal projection of
y onto range (X) - IR" +

y Thus we can see

I dols as solvingT- XfOLS ① = Protrange Y
rangeX
- ② Solve X = Y.

Excess risk

Natural question :
How close i R(EOLS (
to min R(E) ?

EEIRa

This is called the excess risk
We will study it in two situations
D Fixed design : Assume that X-

is deterministic and we study



⑪Expectation
ER(EOS) - min R(O) w.r.t. E

GEIRAu only
R
*

↳ Random design : Assume that-

X is random and we take the expec
tation w .r. t . X as well.

We focus on the fixed design se-
Hing first. Define

5 = = XX
which by assumption is invertible.

Any positive definite matrix defines
an inner product via

(0, 01) :=TO,Y
which induces a norm

11 := 10, 672 = 101= IXE
Let's characterize the generalization
error for any GER?

Lemma() : Suppose X is fixed. Then,-



↳
Y = exT

R(0) - R
*
= 118-E* VOEIR9

and
,
moreover

,
R* = J? t

Proof : Expanding
R(0)= ly-Xo1l?

= IX(0
*
-0) + El

= 18-O-ElEll
= 188-ol + 0?

Ths
,
R* = RCO1 = 02 and the result

follows. #

Recall from our computation last class
that

Elle-E*/ = IIEE-0*/ + El-El
um um
Biasy() Var (E)

E

Next we study these two for the
OLS estimator.



Lemma(n):Suppose that X is fixed.
Then,

Biass() = 0 and (8
*
-09(80-EP

Proof : Recall
GoLs = NX)"XTy = (**"Xi(X8

*
+ 2) = 0+ (xix)"XE.

So by linearity of expectation, EEOL = 0*
Further,
# (fos - -9/(f0-8

PT= (XiX)"XYESEX(X*X)"
un
= 02I

= 02(XTX)
+

= I

As a direct corollary of Lemmas
(8) and (X) we obtain a characte
vization of the excess risk.

Corollary : Suppose X is fixed. Then
ERIEOL) - R* = & g?

T

Proof : We know that since Does is



unbiased
, the excess risk is Vari(E) . Thus,

Vary(oos)= los- 05p

Cyclic E = Etr((00s- 04)(602- (P)T)
invariance

of the trace
= tr(E(00s - 04 (OOLS-E*(T)

= otr(1) = doI I

Another natural question given
that we don't have access to R ,
how close is Rules) to R(00s) ?

Lemma : Suppose that X is fixed. Then,
ERn(s) = 02-do?

Proof : Expanding
ER(803) =- EllV*y1I
= 1(x(XiX)"X - 1) y ll2
= El(x(XTX) "X - I)(X0* + 2/112



= (X(XXX - 1) Elli
E un

P (projection matrix)

= tu((P-1) EEET(P-I(T)
= 02 tr(p-I)(P-IIT)
- ↑

Projection onto a In-dl-dim
subspace.

- ② (n -d).
I


