
Lecture 17
Last time Today

D Covariance Estimation I D Matrix CalculusD Clustering a Gaussian Matrix Chernoff
↑

Mixture. iMatrix Hoeffding
Matrix Calculus
Our goal today is to show the

following extension of Hoeffeling's
inequality for matrices

E Ind mean-zero

IP(11S Gillop = t) <???
We'll need somerotation.

Def (functions of matrices) : Given
-

a function f : RR-R and a XES9
with spectral decomposition

d

X=Min define f(x) :=xi)min
Examples:
D If f(t) = t

=+ => f(x) =X
-+

: X

117 f(t) =[at => f(X-Xp=1 +
We can Taylor expand!



just as with scalars, symmetric
matrices also have an order.

d
Def (Lowner ordering) : Given X, YES-

we say that XY if
Y-XeSi +

Lemac Suppose that X1Y, then :

1) For all AEIR
&xK
,

ATXA& ATY A.

2) All eigenvalues satisfy
ith largest-X : (X) = X : (Y)
3) Let f : R-> R be nonineasing, then
tr (f(x)) = tr (f(y))· t

Given the last item it is natural
to wonder whether
(1) XCY => f(x)(f(y)

2for non increasing f . In general
this is not the case. Indeed

,

t et
is a counterexample Check ! )



Def (Matrix monotore) A function is
matrix monotone if (1) holds XX,Y -/
Lemma 2) The functions titt

-

-
tit +2, and te log t are
matrix monotore. t

Matrix Chernoff
Recall the strategy we use for
scalar random variables :

① Sub-Gaussian MGF
=> Tail boundst

Markov's
for 1 r. V.

② Sum of ind Sub-Gaussian => Sum is also

Peeling argument sub-Gaussian.

In turn
,
the peeling argument is delicate.

Define the MGE of a random
matrix Gas NQ : R- &"given by
Ec(D) = /ea]= E(CK] ·

- k=0 K !
Just as in the scalar case this

controls concentration.



Lemma (Matrix Chernoff Method) : Let
C a random sym . matrix with MGF

defined in some interval (a, a).
Then for all +zo , we have

IP(A , (a) = +) < tr (Ya(r)e freto,a)
As a consequence
ID(11 Cllop2t) = 2 tr(Uc()/e*** 20,a)
max(x, (2) , -Xn(c)3 .
Prof : Taking scalar exponentials
IP (X, (c) =t) = IP(exOca) zeVt)

: IP(X , (e0a) =eut)Markov's

Er(t) = [Xi(A)
Ex ,Lea)e-Ut
L
-Etr (eva) e-Ut
= tr Ye(y) e-U.

E

I

This seems to suggest that we
want Yc(f) to be nicely controlled
by a "Gaussian fail" as before.



Def : A random symmetric ma
-

frix is V-sub-Gaussian if

I(x) ed FYERR
.

+

Example : Suppose G = EB with
-

EnUnifCI1y and Besa fixed.
Then # G2k+

1
=0 and EG2K = B2 So

,

Eee
↑ +

(why?)

Unlike before we don't have a
sum rule because

et+B + etB
in general lit only holds for
commuting matrices) . To "fix" the

S - we willpeeling argumen use

a deep result from analy SiS.
Theorem (Lieb inequality) :-

Let HES9 and define f : S&TR
given by



f(x) = tr exp(H + logX) .
Then,f is concave on S2+
We will not prove this result.

LemmaCD Let Ch, . . ., Ant So be-

independent with Yail . ) defined
over an interval JSR . Let

Sn= Gi. Then,

tr (Ysn(0)) = tr (exp[logYa()
-Chernoff ↓ UEJ .Consequently, method

1P(11* Chillop= t) = 2tr/elogia :()) e-ct
Proof : Expanding
to (Ys(U)) = to EeUs

= trEeUSn-1 + log explUC)

Lieb + Jensen's
=Es tr eUSu-Tlog exp(X)
W
- Estr eUSn-itlog Man

(U



Recursing - logYal
the same

-

>
argument

I

Theorem (Hoffling) : Suppose Q1 , ...,
On are zero-mean

, Vi-Sub-Gaussian
random matrices in S% Then,

- nt?

IP(IGillopt) < 2 rank ([vi) e to
22de XtXO

;

where 02 = /Villop .

Proof : Let V= Vi. From Lemma
-

(C) it suffices t bound
to (exp([logYai (1)) . By sub-
Gaussianity and the monotonicity
of the matrix log (Lemma (i))

N

& log Na :(V) I Vi .
i=1 Z i= 1

Moreover since treet is increasing



Lemma (1) gives
tr(exp(logvai(l)) < 2 trev).
Thus , by Lemma(e) ,

P(Gillop= +) = 2 trleeont

Note that

trief) = rank(A) elAllop
g

moreover Illop= no2 So

IP(112Gillop It) < 2 rank (v) ein-One
The best bound is given by ta-
King U = /g2 , which yields the claim.

I

Remark : The additionala factor
in the bound is in general
unavoidable.


