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Covariance Estimation
Principal component Analysis (PCA)

is a popular tecnique to reduce

the dimension ladaptively) . Suppose
we have an iid sample X

+, . . ., Xn
EIRd

with X , ~D. When d is large, it makes
sense to findfry to find a projection
C : /RP ->UERA onto a subspace U
that encodes "most interesting" dimensions
of the distribution D.

Lemma : Suppose X-D whose covarian
-

a C has eigenvalues 1 ,2x2... 20
and eigenvectors , , . . ., Ud , then EKEEd]

Xx = max

v 44 , ...,M-,3 , /VI =1
Var((X , v])



and the maximum is attained at UK . +
Thus

, we believe that we can measure
how interesting a direction is with

its variance
,
then it makes sense

Xfor some K
to try to compute the top K eigenve?
tors of G ,

call them U [ ...]]
and define C = UUi

200 random points , top eigenvectors scaled
by standard denations.

Issue : We don't have access to E.
itBut , we can approximate using

samples via

E=X
Because of the law of large numbers



we know that In-2 as. But
how large doesa have to be

for 112n-Ellop E w .
h

. p ?

Theorem : Let X be a sub-Gaussian
-

randomvector in R& with EX=0 and EXXT=E.

Moreover, assume Xkz1
11 <X ,x) /lu

,
= KxiEx AxeR?

Then
, for all m ,

we have

#E-Ellop = CK"(+)
11[llop

Proof : To apply the main result from-

Lecture 15 , we modify X , to make

them isotropic . In particular we let

z = EX and Zi =&Xi.
Then, it is not hard to check that
Ez =0 , EZZ =I, Ilzllv= K .

Hence , we can rewrite

1[n-Ellop = 11 [(ZiZ-1)Elop



For diagonal matrices IID"llp = IIDKop

IIEllopIzz-Illop.

(a)

Mu
Thus

, if we consider the matrix
A with rows given by Zi , we get

ATA=ZiZ .

Applying (i) from Lecture 15 gives
11RullopECK2(+)

substituting this into (B) completes
the proof . I

Corollary : Consider the setting of-

the previous theorem. There JC O Sit.

for all Et (0 ,1) if
-2

n2can
K4

Then,

EllEn-Ellop - EIEllop . t

Clustering Gaussian Mixtures
Let's illustrate another type of



clustering application , this time
for point clouds as opposed to
networks.

Def (Gaussian MixtureModel) : Generate
randomn points in IRViid as follows:

1
. Flip a fair coin Si.
2 . Draw a point X from NISiM , Ind) .

-

Analogously , we could define
X = Su +gX *
~ Unif4IY ~ NCo, In) .

with s and g independent.

n= 3000 points drawn from GMM
with means IM = 1 (1. 6, 0).



Given observations X, , . . ., Xn our

goal is to estimate the labels
S,,..., Su . Once more we use a

spectral method that tries to look

for a direction of maximum variance.

Spectral Clustering Algorithm
Input : Samples X, ... >XnE9
1
. Compute the sample covariace

&
n=XX

2. Compute the top eigenector
V = u1([n) .

3. For all it[n] , output

: = sign ((X , v)).
What we have proven so far can
be used to establish the following
result.
Theorem : Let X. , . . ., In be points
-



in Ra drawn from GMM(M). There
exists 60 st . If n2Cd and
lM/z =C, then with probability at
least 0 .99 the Spectral Clustering
Algorithm only misclassifies at most
1 % of the poin+s -

Prove this result !

Remark : 1)The diameter of a point-

cloud drawn from NCO , In is on the

order ofIn, yet a small amount

of separation yul1 suffices for
classification.
2) This is optimal love cannot do
better than n2Cd. However when

g-NCO , El with unknown
,
the

picture becomes way more manced.

See C Clustering a mixture of Gaussian
with unknown covariance" by
D . Davis , 1 . Wang & the instructor.


