Lecture 15 Last time

Today

b Detour: error correcting of sub-Gaussian matrices codes

Bounds on the singular values of sub-Gaussian matrices

We started our investigation by thinking that 10 that if

(X) max ||Av||₂ & max ||Av||₂ vest ||Av||₂

then we can apply union bound to get high probability bounds 11Allop. Today we will execute this plan. Our first result formalizes (x).

Lemma: Let A be a nxm matrix and EE [0,1). Then, for any E-net N of the sphere 5^{m-1}, we have

Sup $||Ax||_2 \le ||A||_{op} \le \frac{1}{1-\epsilon} \sup_{x \in \mathcal{N}} ||Ax||_2$. Proof: The lower bound is trivial since

NESm-! To prove the upper bound, take VEBM-1 s.t. ||Allop = 11Axllop. Since N is an e-net, there exists yen s.t. $|y-x|| \le \varepsilon$. Then

 $||A_{\mathcal{X}}|| \leq ||A_{\mathcal{X}} - A_{\mathcal{Y}}|| + ||A_{\mathcal{Y}}||$ < Ell Allop + ||Ay ||.

Thus, rearranging 11 April 4 1-6 114411 4 1-6 26W 114212.

We shall use a slightly different version of this lemma.

Lemma (Max): Let AES" be a sym. matrix and EELO,1). Then, for any E-net N of the sphere 5ⁿ⁻¹ wood have

SUP $\langle \chi, A\chi \rangle \leq \|A\|_{op} \leq \frac{1}{1-2\epsilon} \sup_{\chi_{\epsilon}} \langle \chi, A\chi \rangle.$

Try to modify our previous proof to derive this result.

We say that a random vector Z in IR" is sub-Gaussian if 11711/2:= SUP 11/2, V) 1 < 00.

We say that z is isotropic if Ezzi = I.

Lemma: Show that $z \sim N(0, I)$ is sub-Gaussian and isotropic. If we are ready for the main result of to day. With $M \leq n$ Theorem: Let A be an $n \times m$ random matrix with independent, mean zero, sub-Gaussian, isotropic rows A_i . Then, for any $t \geq 0$ we have $\sqrt{n} - CK^2(\sqrt{m} + t) \leq C_m(A) \leq C_i(A) \leq \sqrt{n} + CK^2(\sqrt{m} + t)$ with probability at least $1-2\exp(-t^2)$, where $K = \max \|A_i\|$.

Proof: We shall use the following Lemma to rewrite the conclusion.

Lemma (Iso): For AEIRnim with men and a scalar E>0, the following are equivatent:

(A) | ATA - Illop & E.

(b) (1-E) 11×112 = 11A×112 = (1+E) 11×112 +x.

(c) $1 - \varepsilon \leq \sigma_m(A)^2 \leq \sigma_i(A)^2 \leq 1 + \varepsilon$. Proof of Lemma (Iso): (a) (=> (b) whole assume $||x||_2 = 1$ in (b). Then 11 ATA - Illop = max |xT(ATA - I)x| = max | ||Ax||2 - 1 | Thus, this being bounded by & is equivalent to (b). (b) (a) This follows from the varietie nal characterization $\sigma_{i}(A) = \max_{x \in S^{m-1}} ||Ax||$ and $\sigma_{m}(A) = \min_{x \in S^{m-1}} ||Ax||$. Recall from Lecture 8 that |t2-1| ≤ 8 V 82 ⇒ |t-1| ≤ 8 \ t,820. Thus, to prove the result it suffices to show that (check!) (ii) | = ATA - Illop & K2(8V82) with 8 = C(1/m + #). The proof follows in three steps. Step 1: Approximation. Using Corollary O

from Lecture 14 allows us to construct an 2-vet N of 8^{m-1} with cardinality INI & 9^m. Then, by Lemma (Max) we have

So to prove (ii) it suffices to show $\max_{x \in \mathcal{N}} \left| \frac{1}{n} \|Ax\|_{2}^{2} - 1 \right| \leq \frac{\varepsilon}{2}$ with $\varepsilon = k^{2}(8 \vee 8^{2})$.

Step 2: Concentration. Fix $x \in N$ and express $||Ax||_2^2$ as

 $||A\chi||_2^2 = \sum_{i=1}^n \langle A_i, \chi \rangle^2.$

By our assumptions, K_i are independent sub-Gaussian random variables with $E_i X_i^2 = 1$ and and $I_i X_i I_{ij} \leq K$ (Check!). This makes $X_i^2 - 1$ independent, mean zero subexponential random variables

with
$$\|x_{1}^{2}-1\|_{V_{2}} \le CK^{2}$$
. By Berenstein's irequality we get $P(|\frac{1}{n}\|Ax\|_{2}^{2}-1|\ge \frac{\epsilon}{2})$

= $P(|\frac{1}{n}|\sum_{i=1}^{n}X_{i}^{2}-1|\ge \frac{\epsilon}{2})$
 $\le 2 \exp(-c_{1}(\frac{\epsilon^{2}}{K^{4}} \land \frac{\epsilon}{K^{4}})n)$

= $2 \exp(-c_{1}S^{2}n) = Since \frac{\epsilon}{K^{2}} = 8 \vee S^{4}$
 $\le 2 \exp(-c_{1}S^{2}n) = Since \frac{\epsilon}{K^{2}} = 8 \vee S^{4}$
 $\le 2 \exp(-c_{1}C^{2}(n+t^{2}) = (a+b)^{2} \ge a^{2}+b^{2} + a^{2}+b^{2}+b^{2} + a^{2}+b^{2} + a^{2}+b^{2}+$

Since have the freedom to pick C, we ensure

which concludes the argument.

Remark: 1) Note that we never computed expectations of norms for this proof. Nonetheless, we can use this high probability bounds to derive

E | Allop & CK(7n+7m) and

E | 1 + AA - I | & CK2 (1/n+1/m).

- 2) The bound on the operator norm is optimal. See Exercise 4.42 of Vershynin's.
- 3) Something remarkable about this result is that we only need independence among rows (the entries per row might depend on each other).