Lecture 14 Last time

D'Community de tections continued

P Nets, coverings, and packings.

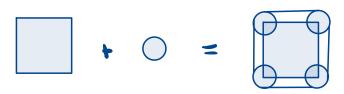
Today

D Covering numbers via

o Detour: error correcting codes

Covering numbers via volume In most applications we will be interested in how big covering num bers are. Today we will see a simple argument to bound these numbers when

T=Rⁿ and $d(x,y) = ||x-y||_2$. We will relate them to volume. We need a definition before that. Def (Minkowski sum): Let A and B be subsets of Rⁿ. The Minkowski sums A+B is given by A+B=1 a+b 1 a ∈ A, b ∈ B f.



Proposition :: Let K be a subet of \mathbb{R}^{n} and $\varepsilon > 0$. Then, $\frac{\text{Established last lecture}}{\text{Vol}(K)} \le \mathcal{N}(K, \varepsilon) \le \mathcal{P}(K, \varepsilon) \le \frac{\text{Vol}(K + \xi B_{2}^{n})}{\text{Vol}(\xi B_{2}^{n})}$ Bi= 1x6 Ri: 1|x1|2 < 19. we drop the dependency Proof: We start by proving the lower bound. Let N=N(K, E), then K can be covered by N balls with radii E. Comparing volumes gives Vol(K) & N. Vol(EB2). For the upper bound, take $N = P(K, \epsilon)$. Notice that if we take E/2 balls around the packing yields a set of nonintersecting balls confained in K+ & Bz, thus N· Vol(& Bz) & Vol(K), which establishes the result. We leverage this argument to obtain upper and lower bounds for the ball.

Corollary 0: The covering number of the unit ball B' satisfies (1)" SN(B2, E) S(2+1)" S(3)" YEE(0,1) The same upper bound applies for 5ⁿ⁻¹ Proof: Reall that Vol(EB") = E" Vol(B") thus the lower bound follows by Propo sition =. By the same proposition N(B2, E) & Vol(1+ E/2) B2) Vol (토 B ;) £ (1+E/2)" (E/2)" $= \left(\frac{2}{6} + 1\right)^{N}$ $\leq \left(\frac{3}{4}\right)^n$

The same proof applies for the sphere.

Covering numbers measure the "complexi"

ty of sets. We will see later that often log N(K, E) is a useful quantity to understand, and it is known as the metric entropy of K.

Error correcting codes Suppose Aush wants to send

Suppose Ayush wants to send a wessage to Barbara with k letters

x:= "bring snacks"

But an adversary corrups Ayush's message by changing r=2 letter, and Barbara receives

y := "bring snakes."

thow do us ensure that us can recover the correct message? A natural idea is to use redundancy: Ayush encodes his k-letter message into a longer n-letter message.

Example (Repeating Code): Ayush might just repeat the message

E(x) = "bring snacks | bring snacks | bring snacks"

Barbara can use majority decoding: check the received copies of each letter in Ecx) and pick the one that appears more often. If the message x is repeated 2r+1 times, this strategy will recover x correctly (even if r letters of Ecx) are corrupted).

The issue with this strategy is that it is very inefficient: it requires

n 2 (21+1)K.

Indeed, we shall show that non be much smaller. First we formalize the notion of an error correcting code. For simplicity (an also for practical utility), consider a binary alphabet.

Def: An error correcting code that encodes k-bit strings into n-bit strings and can correct rerrors consists of an encoding map

E: $40,11^k \rightarrow 40,11^n$ and an decoding $0:40,11^n \rightarrow 40,11^k$ such that D(y) = xfor all xe10,14" and ye10,14" s.t. g differs from E(x) in at most r bits. In turn, the binary cube is a metric space. Hamming cube Lemma: The set H=10,14" and distance distance dy (x,y) = # fil x; + y; f. form a metric space. Proposition [Consider K= 10, 14" and let m E [n], then $\frac{2^n}{\tilde{Z}(n)} \leq W(K, d_{H_1}m) \leq \mathcal{D}(K, d_{H_1}m) \leq \frac{2^m}{\tilde{Z}(n)}.$

Hint: Use the volume argument, now with cardinality.

Lemma ☑: Suppose K, n, r ∈ IN s.t. (A) log 2 P(10,14", dH, 2r) ≥ K.

Then, there exists an error correcting code that encodes k-bit strings into n-bit strings and corrects up to r errors.

Proof: By (*) there exists
a 2r separated set $N \in \{0,1\}^n$ s.t. $|N| = 2^k$. Thus, the closed
balls of radius r centered at
the points in N are disjoint.
Let $E: \{0,1\}^k \to N$ be any 1-1
map, and let $D: \{0,1\}^n \to \{0,1\}^k$ be a nearest neighbor decoder.

 $D(y) = x_0$ with min $d_H(E(x_0), y)$.

If ye lo, 15° is within distance r of the true message, then

this strategy returns the true me ssage.

Theorem: Suppose that k,n,relVs.t.

(11) $n \ge K + 2r \log_2\left(\frac{en}{2r}\right)$.

Then, there exists an error correcting code that encodes k-bit
strings into n-bit strings and
corrects up to r errors.

Proof: Invoking Lemma 18 toge ther with Proposition \square yields the conclusion follows since $P(10,11^n, d_H, 2r) \ge N(10,11^n, d_H, 2r)$

Sterlings $\frac{2^n}{1=0}$ (%) $\frac{2^n}{1=0}$ $\frac{2^n}{1=0}$

Thus, n grows linearly with r lignering log terms) as opposed to rk (recall our original naive idea).