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Community Detection continued
In expectation this matrix has

a block structured. Assuming the

first community is [11] , we have

EA =·I IL" q :
check that this matrix is rank

2 with 1= p+an X2= ,
Z

C

u=] and =
L

Rey Insight : Thus , if A is close

to EA we could use its second

eigenvector to identify the communities.



Spectral Clustering Algorithm
Input : Graph G
Step 1 :Compute adjecency matrix A
Step 2 : Compute U2 (A) < eigenvalve

associated
with2nd largest di

Step 3 : Return sign (U2(A)).

We shall prove the following theorem
Theorem : Let G-G(n, p, q) and
-

q 1(p-q) =:u > 0 . Then , with probabl

lity at least 1-ye"
,
the spectral

clustering algorithm identifies the

communities of G with at most

C/u2 misclassified vertices. t
Tuniversal constant
Remark :
- In HW3 you will get rid of the depen
dency ina from M.
· This result allows for an expected
average degree of In. This is highly
suboptimal , state of the art results



allow for Ollogn) . See Abbe,
Bandeira & Hall (2015) .

Proof o
(

Applying the Davis-Kahan
-

sin O theorem
-
Unit norm eigen rector associated

to X(EA)

SinASTA-PLAY
Check (HW3)

12 #A-EAllop .

un
Nextts we use a fact that will

occupy the next few Lectures
.

Fact (80 : We have that

IP(IIA-EAllop I (i) -4e-h

for some universal constant co. +

Thus
, assuming we are in the event

we get
sin < /NCA)

,
Ue(A)) [E

Therefore ,



min IUIEA)-SUCAIII EnSEGILY

Now , consider ve := muz we get
- If entries

#1 : 1 sign (VI(A)) y VICIEA) Y

creck!
= H I sign (VI(A)) - VILIEAlS
↳ (VCA-VEEA)(2

= Ou I

Nets
, coverings , and packings

Our next goal is to prove Fact(8).
Suppose A- Rhem random matrix and
our goal is to get high probabi-
lity bounds on

11Allop = max IArlly ·
VE $m-1

Before, we derived probability bounds
j

max Xi using the union bound g

jE[n]
However

,
this only applied for



finitely many variables. In 11All
op

we have infinitely many of them.
We will develop a powerful method to
bound maxima max Xv of random

-VEK
variables Xv that change continuously
not to the index v .

key idea : If we substitute the
infinite set Im+ by a finite
set N $m+ such that

max llArll == maxllAvIlz
ve$m- VEN

Then , we can apply the same
union bound strategy as before.
In what follows we learn how to

construct such finite sets W.

Def(E-nets) : Let (T, d) be a metric
-

space. Consider a set KIT and

a number Eso . A subset NSK is
called an e-net of K if
VX-kExoEN Std(X ,XolE .



The covering number of K denoted
NCK, d, 2) is the cardinality of the
smallest E-net of K.

t
Metric space : d : TeT-R

+
S .f # X

,Y, z
1
. d(X,X) = 0,I 2. If X+Y => d(x,y)>0, S3 - d(x,Y) = dCy,X) .g
4 . d(x

,y) = d(x,z) + d(z, y).

Example : CIRP
,
d) with dex

,y) = 1x-y112.-

In that case we cover the set with

round balls
.

* * ·

M*

*··
-

E-net E/2-packing
Def (Packing number) : A subset N of a
-

metric space (Td) is E-separated if
dix, y) > E if X,YEN and X&Y.

The cardinality of the largest E-separa



fed subset of KCT is called the

packing number of K devoted Pl,&, 3).
+

In turn, covering and packing run
bers are almost the same.

Lemma 0 : For any subset KIT and

E>0, we have

P(K ,d,2) < N(K,d, g) < P(k, d, E) .

Proof : To prove the lower bound. Take

a 29- packing P and an E-covering
W.

Let XE D
,
then by def. there

is yeu sit
. dex,y) <E . By def

VzE PlaXY
d(z , y) = d(z

,
x) - d(x

,y) > E.
Thus
, for each Xep there exist a

unique yew and so IP1 /I.

Since P andW are arbitrary , the lower

bound follows.

To prove the upper bound. Let I



be a maximal e-separated set of
K

,
i
.
e
, IWl = PIK ,

d, El . We want

to show that W is an e-net.

Let XeK
, suppose in search of

contradiction that Vyen
d(x
, y) = q .

This
, implies that NUXb is a

larger E-separated set . Y
Thus,

W(K, d, e) = Im = P(k , d , ).


