Lecture 11

Last time

- D Best low-rank approxi-
- o ferturbation theory for eigenvalues
- · Distances hectuen subspeces

Today

- P Distances continued.
- Davis-Kahan Sin & Theorem

Distances and angles between subspaces Last time we ended with 3 notions of distances between subspaces

- 1) Distance with optimal rotation dist_{W-W} (U, U*) = min || UR U*||.
 e.g., Frobenius, operator REOGN
- 2) Distance between projections

 11 UUT U*(U*)*111

This matrix projects onto U.
3) Pricipal angles

Let $\sigma_{i,2...2}\sigma_{r,2$

$$\Theta = \begin{bmatrix} \Theta_1 & \cdots & \\ & \ddots & \\ & & Sin \Theta_2 \end{bmatrix}, \quad Sin \Theta = \begin{bmatrix} Sin \Theta_1 & \cdots & \\ & \ddots & \\ & Sin \Theta_2 \end{bmatrix}.$$

We weasure

III sin O III.

Interpretation: The angle between a couple of 10 subspaces is clearly defined up ut

What's the angle between a couple of 2D subspaces?

The idea is to define a set of angles instead of just one angle.

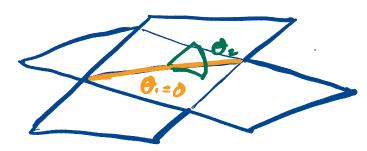
The first principle angle

 $\Theta_{i} = \min_{\substack{u \in U \cap S^{d_{i}} \\ v \in U \cap S^{d_{i}}}} \Delta(u, v)$

= min arccos ((u,v))
ue Un 5d-1
ve un 3d-1

 $\theta_2 = min$ $u \in (u \setminus span(u)) \cap s^{d-1}$ $v \in (u' \setminus span(v)) \cap s^{d-1}$

Pictorially



Comparison between different "distances" For our purposes any of these three distances are the "same."

Lemma 4 (Lemmos 2.5 & 26 in Chen, Chi, Fan & Ma 2021) Let UER and U*GIR".
Then,

11 UUT - U+U+T 11 = 11sin O 11 op = 11U_TU+11 op = 11UTU+11 op

 $\frac{1}{72} \| \mathbf{U} \mathbf{U}^{\mathsf{T}} - \mathbf{U}^{\mathsf{T}} \mathbf{U}^{\mathsf{T}} \| = \| \sin \Theta \|_{\mathsf{F}} = \| \mathbf{U}_{\mathsf{T}}^{\mathsf{T}} \mathbf{U}^{\mathsf{T}} \|_{\mathsf{F}} = \| \mathbf{U}^{\mathsf{T}} \mathbf{U}^{\mathsf{T}} \|_{\mathsf{F}}$ and, further

1 UUT - UUTT Lop min lur - R*11 op = TZH UUT - UUTT Lop

REOUT) TO NUVI- UUTTIFE min lur-R*II E II UUT- UUTTIF. Thus, controlling any would be fire. Davis-Kahan Sin & theorem
Going back to perturbation analysis
for eigenvectors, suppose we have $M = M^* + E \in S^n$ with eigendecompositions: $M^* = \sum_{i=1}^{n} \lambda_i^* u_i^* u_i^* T = \left[U^* \ U_1^* \right] \left[\Lambda_1^* \right] \left[U_1^* \right],$ (4) $M = \sum_{i=1}^{n} \lambda_i u_i^* u_i^* = \left[\begin{array}{c} U & U_{\perp} \end{array} \right] \left[\begin{array}{c} \Lambda \\ V_{\perp} \end{array} \right] \left[\begin{array}{c} U^T \\ V_{\perp} \end{array} \right],$ where $U = [u_1^*, ..., u_r^*]$, $U_1^* = [u_{r_1}^*, ..., u_r^*]$, 1 = diag (1, ..., 1), and 1 = diag (1, ..., 1) The matrices U, UL, 1 and 11 are defired analogously.

Warning: Unlike for eigenvalues, eigen vectors are stable only if their associated eigenvalues are sufficiently for apart.

Example: Consider

$$M^{4} = \begin{bmatrix} 1+\varepsilon \\ 1-\varepsilon \end{bmatrix}, \quad E = \begin{bmatrix} -\varepsilon & \varepsilon \\ \varepsilon & \varepsilon \end{bmatrix}, \quad M = \begin{bmatrix} 1 & \varepsilon \\ \varepsilon & 1 \end{bmatrix}$$

for EE(0,1). Then, a routire computation yields that the leading eigenvectors of M^* and M are

$$u_1^* = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $u_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Two, regardless of ϵ , we have $\|u_1u_1^T - u_1^*u_1^*\|_{p} = \frac{1}{2}(\sqrt{3}+\sqrt{2}-1) \approx 1.07$ $\|u_1u_1^T - u_1^*u_1^*\|_{p} = \sqrt{3-72} \approx 1.26$

The issue here is that M^* is too close to having a 2D eigenspace associated with the top eigenvalue and a small perturbation can move eigenvectors "far away." Thus, we need some control on $\lambda_1(M^*) - \lambda_2(M^*)$.

The following is a seminal result due to Davis and Kahan.

Theorem (Davis-Kahan Sin (9) Consider

M and M+ as in (6). Suppose I scalars

a & b and $\Delta > 0$ s.t. any of the following

two conditions hold

- 1) $\{\lambda_1^*, \ldots, \lambda_n^*\} \subseteq [a,b]$, and $\{\lambda_{r_{t_1}}, \ldots, \lambda_n\} \subseteq (-\infty, a-\Delta] \cup [b+\Delta, \infty)$.
- 2) $\{\lambda_1^*, \ldots, \lambda_r^*\} \subseteq (-\infty, \alpha \Delta] \cup [b+\Delta, \infty)$, and $\{\lambda_{r_{t_1}}, \ldots, \lambda_{n_t}\} \subseteq [a, b]$.

Then,

 $dist_{p}(U, U^{*}) \le \sqrt{2} ||sin \Theta||_{op} \le \sqrt{2} ||E||_{op};$ $dist_{p}(U, U^{*}) \le \sqrt{2} ||sin \Theta||_{p} \le \sqrt{2} ||E||_{op}.$

This statement is a bit inconvenient because the eigenvalues of $M = M^* + E$ depend implicitly on both M^* and E.

The following corollary requires more ex-plicit control on IENop. Corollary (:): Consider M and M+ as in (6). Assume $|\lambda_{n}^{*}| \geq \ldots \geq |\lambda_{n}^{*}|$ and $|\lambda_1| \geq \dots \geq |\lambda_n|$. Further, suppose ||E||op < (1 - 1/12)(||\lambda_r| - ||\lambda_r||). Then, distop(U,U*) & 12 | Sin Ollop & 2 | Ellop dist f (U, U*) & To 11 sin Olf & 2 Tr 11 Ellop.