
Lecture 10
Last time Today
↳ Matrix norms D Best low-rank approxi-

mation
D Singular Value De- I-Perturbation theory forcomposition eigenvalues
a Spectral Factorization Distances beetmen subspaces
Low-rank approx imation
In turn

,
SVD and spectral decom

positions are useful to find
low-rank approx imations of
matrices.

Def : The best low-rank K approxi
-

mation of a matrix A is

A ,k I argmin IIA-Bllop1) ↑ +rank B=K
We could take F here but it wouldn't
make a difference.
Low-rank approximati ons are
routinely used in data science

because

(1) We can store them with

dr scalars (better than d2)

y
↑

up for low-rank matrices
Je .g., matrix-rector products).
13) Often low-rank approximations
are accurate



& ↑ ↑

↑

(2) Many computations can be speed
up for low-rank matrices
Je .g., matrix-rector products
require Oldr) floops .)

(3) Often low-rank approximations
are accurate. (Udell & Townsend, 119).

Potential project
Let's see some practical exam-
ples where we take a grey

-

scale image and treat each pixed
as an entry of a matrix :



Now with the JH logo :

Very
->much low-rank



A natural question now is how

do we obtain o the best rank
k approximation ?
Theorem ↓Eckart-Young) : Let
AtiRum and pick Krank(A).
Take

An= :W
i=1

Then, Ar is rank K and
min It-Blop = llA-Al Orti
rank(B) =K +

Proof : We can diagonalize-

UTAV - drag (0., ..., Ex , 0 , . . .,0
and So Al has rank K.

Moreover, thank to Fact O we

have

IIA-Aillop = 11 diag (0, ...,0, One, -..) Klop
F Ok++

rank K matrix.LetBbe anyeersts an ortho-



gonal basis
*11 ... , Xm-K of null (B) .

Moreover, a dimension counting
↓

argumen yields
Span &X ,, ....my1 Spankv.....,Vy + 0.
Let z be a unit norm in this

intersection. Then

1/A-Bllop : NIA-B)zIl?
= IAzIl?

=&
2·
= O

= 11A-Allop. I

Exercise: Given a symmetric
matrix A and its spectral
factorization USU ? now can



you construct Asks ?
+

It turns out that the same
result follows if we substi

tute II : Ilop by 11 . IF in the

definition of best rank k appro
ximation

.

Theorem : Let AER and pick-

Krank(A)
. Take

K

An = 2 :W
i=1

Then,

min 11A-BII
F
=IIA-Al Orti

rank(B) =K t

Fundamentals of perturbation
theory
As we saw with our image
examples, often we don't

have a low-rank matrix exactly



but rather an approximate one.

Thus , we might expect to

have
~ Noisy

AM = + E .

TrulyYow-rank

This yields the question of
How far are singular/ eigen
values and rectors of M

from those of A ?

Today we will cover fundamental
results that answer this

question. We will not prove
the results concerning the "values"

as they would require a lot

of background , instead we inclu
de relevant pointers.
Perturbation of eigenvalues and
singular values



The next two results are
proven in Tao (2012) Chapter
1 or in Bhatia (1997)

Chapter 111 . 2.

Lemma (Weyl's iney · for eigenvalues)
Let A

,
EES"

. There for all
it [n] we have

(xi(A) - Xi(A +E)11 IIEllop .
t

Lemma CWeyl's iney. for singular values)
Let A

,
EE paym. Them for all

it Sminhu,my] we have that
10 (A) - Oi(A +E)11IIEllop .

t
Thus , eigenvalues and singular
values are Lipschitz land
hence stable to small perturba
tions) .



Interlude : distances and angles
between subspaces.
Next we want to measure distances
between eigenvectors. Notice that com
paring vectors directly is not necessa

my what we want since we can he

ve entire subspaces associated with
a single eigenvalue . Thus we want
to measure distances between

supspaces generated by eigenvectors
We will use the following fact.
FactA (Stewart & Sun , 1990 , Thm . 3 . 9) :

Suppose that III . III is a norm that

is invariant under rotations. Then,
for any A

, B we have

IAIIOmin(B) : 111 A BII :111 AIII . HBIop,
f and

Omin(A) /11BI11 E IIABIIIIIIAllop IIIBIII.
T



Consider two supspaces
U = Span &US and UP= Span[U*3.
( ..un (4)

We write U and uI for the
nx (n-r) matrices s . t. [U , UIJE OCu)

and [U*, UP]eO(u) . Thus , U1 andI
are bases for ut and (4*

+
,
resp.

A very naive idea to measure

the distance betweenU and u*

would be to use some norm

IIIU-U* III.
This is a bad idea because I can

find another basis for U and that
would change this metric .

#y



Insight : We need metrics that are
invariant under rotations UR with

RE OCr) .

Here are some choices

1) Distance with optimal rotation
disti. (U , U*) = min IIIUR-U

* III.

e.g ., Frobenius , operator
REOCr)

2) Distance between projections
IIIUUT-U**)"III
t

This matrix projects onto U.

3) Pricipal angles.
Let 0. 2... 2Or z0 be the singular values
of UTUP. Since

lutulop = /UllopIIUPHop1.
- Y Fact*

then
,
0: [0, 1]· Define O : = accessOi,
o
...

sin G,

o = [or] ·
sine- I ... 1

.
sinOr



and we can measure

IIIsin III.

Exercise : Show that all of these
are the same regardless theof
bases we chose . t

op


