
Mathematics of Data Science, Fall 2025 - Homework 3
Due at 11:49PM on Sunday Oct/19 (Gradescope)

Your submitted solutions to assignments should be your own work. You are al-
lowed to discuss homework problems with other students, but should carry out the
execution of any thoughts/directions discussed independently, on your own. Ac-
knowledge any source you consult. Do not use any type of Large Language Model,
e.g., ChatGPT, to blindly answer this assignment. If you do, your submission will
be voided and you will get zero as a grade.

Problem 1 - Fun with eigenvalues

Let A ∈ Rn×m be a matrix with n ≤ m. Prove the following.

(a) The eigenvalues of AA⊤ correspond to σ1(A)2, . . . , σn(A)2 and similarly, A⊤A has egien-
values σ1(A)2, . . . , σn(A)2 together with m − n copies of the eigenvalue zero. Based on
this obsevation give an alternate proof of the singular value decomposition theorem from
Lecture 9 using the spectral decomposition theorem.

(b) Just for this question suppose further that A ∈ Sn (i.e., the matrix is symmetric n × n).
Somebody lands you the eigenvalue decomposition A = UΛU⊤ (U ∈ O(n) and Λ =
diag(λ1, λ2, . . . , λn)). Provide an algorithm, and a justification of its correctness, to com-
pute the singular value decomposition of A from its eigenvalue decomposition.

(c) Establish the Courant–Fischer min–max formula

σi(A) = sup
V⊂Rm

dimV=i

inf
v∈V

∥v∥2=1

∥Av∥2, (1)

for all 1 ≤ i ≤ n, where the supremum ranges over all i-dimensional subspaces V of Rm.

(d) Use (c) to show the next two inequalities.

1. For all 1 ≤ i, j with i+ j − 1 ≤ n,

σi+j−1(A+B) ≤ σi(A) + σj(B).

2. For all 1 ≤ i ≤ n, ∣∣σi(A+B)− σi(A)
∣∣ ≤ ∥B∥op.

Problem 2 - Operating at large scale

Let A ∈ Rn×m be a matrix with n ≤ m. Suppose we wanted to compute its operator norm. One
natural strategy would be to first find the singular value decomposition of A and then extract the
top singular value. However, this strategy is often too expensive for large matrices. Instead, here
are two computationally friendly ways to approximate the operator norm of a matrix. Consider
a random vector x ∼ N (0, Im).
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(a) Show that, with probability one,

lim
k→∞

∥(A⊤A)kx∥1/k2 = ∥A∥2op.

(b) Consider an iterative method that starts at x0 = x, and at each iteration updates

xk+1 ←
A⊤Axk
∥A⊤Axk∥2

.

Show that with probability one, we have limk→∞ ∥A⊤Axk∥2 = ∥A∥2op.

(c) Generate A ∈ Rn×m a random matrix with i.i.d. entries where A11 ∼ N(0, 1) with
n = 100 and m = 200. Compute using σ1(A) an SVD decomposition and plot the er-
rors of both methods as a function of k. That is, plot

∣∣∣∥(A⊤A)kx∥1/k2 − σ1(A)2
∣∣∣ and∣∣∥A⊤Axk∥2 − σ1(A)2

∣∣ versus the number of iterations k.

Problem 3 - Yet another variant of Davis-Kahan sin θ

Here is yet another variant that is often useful. Let ∥·∥F be the Frobenius norm.

Theorem 1. Let M,M⋆ ∈ Rn×n be symmetric with eigenvalues λ1 ≥ · · · ≥ λn and λ⋆
1 ≥ · · · ≥

λ
⋆

p, respectively, and let E = M −M⋆. Fix integers 1 ≤ r ≤ s ≤ n and assume

∆ := min{λ⋆
r−1 − λ⋆

r , λ
⋆
s − λ⋆

s+1} > 0, where by convention λ⋆
0 := +∞, and λ⋆

n+1 := −∞.

Let d := s− r + 1, and let

U := [ur, . . . , us] ∈ Rn×d, U⋆ := [u⋆r , . . . , u
⋆
s] ∈ Rn×d, Λ = (λr , . . . , λs), Λ⋆ = (λ⋆

r , . . . , λ
⋆
s),

where Muj = λjuj and M⋆u⋆j = λ⋆
ju

⋆
j for j = r, . . . , s. Further, let U⊥ ∈ Rn×(n−d) and

U⋆
⊥ ∈ Rn×(n−d) be such that [U,U⊥] ∈ O(n) and [U⋆, U⋆

⊥] ∈ O(n). Then,∥∥∥U⊤
⊥U⋆

∥∥∥
F
≤

2∥E∥F
∆

.

The proof is somewhat similar to the one in class, and you will develop it in this exercise.

(a) Show that ∥UΛ⋆ −M⋆U∥F ≤ ∥EU∥F + ∥U(Λ− Λ⋆)∥F. Use this inequality to conclude
∥UΛ⋆ −M⋆U∥F ≤ 2∥E∥F, feel free to use the following fact without a proof.

Fact 1 (Hoffman-Wielant Inequality). Let A,B ∈ Rn×n be symmetric. Then,

∥λ(A)− λ(B)∥2 ≤ ∥M −M⋆∥F,

where λ(·) is the vector sorted eigenvalues of its input.

(b) Prove that ∥UΛ⋆ −M⋆U∥F ≥
∥∥∥U⋆

⊥
⊤UΛ⋆ − Λ⋆

⊥U
⋆
⊥
⊤U

∥∥∥
F
. Hint: Pythagoras always comes

to the rescue.
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(c) We will use a simple linear algebra fact that requires some additional notation. Let
A ∈ Rn×m and B ∈ Rp×q, then their Kronecker product is a matrix (A ⊗ B) ∈ Rpn×qm

defined by blocks via

A⊗B =

A11B · · · A1mB
...

. . .
...

An1B · · · AnmB

 .

Fact 2. The map that sends a matrix W to the matrix product W 7→ BWA⊤ can be
written as BWA⊤ = (A⊗B) vec(W ) where vec stacks the columns of W into a vector.

Use this fact to show that
∥∥∥U⋆

⊥
⊤UΛ⋆ − Λ⋆

⊥U
⋆
⊥
⊤U

∥∥∥
F
≥ ∆

∥∥U⊤
⊥U⋆

∥∥
F
.

(d) Leverage these inequalities to prove this version of the Davis-Kahan sin θ theorem.

Problem 4 - Fixing the spectrum

In Lecture 13 we proved a guarantee for the recovery of communities in the stochastic
block model. This guarantee requires the probability of a link across communities q to be
sufficiently large. In this exercise, we will fix this issue. Let G ∼ G(n, p, q) be a graph
drawn using this distribution and A be its random adjecency matrix.

(a) Consider the following quantity

λ̂1 =
2

n(n− 1)

∑
i<j

Aij .

Show that with high probability (i.e., the probability goes to one as n→∞)∣∣∣∣λ̂1 −
p+ q

2

∣∣∣∣ ≤ log(n)

n
.

(b) Design a modified spectral algorithm such that misclassifies at most C/(p− q)2 mis-
classified vertices with high probability. Hint: Consider Â = A− λ̂111

⊤.
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